Lecture 26
Existential Types
Namespaces

It’s no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.
Namespaces

It’s no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name collisions.

And components become tightly coupled: any component can use a name defined by any other.
Modularity

A *module* is a collection of named entities that are related.

Modules provide separate namespaces: different modules can use the same names without worrying about collisions.

Modules can:

- Choose which names to export
- Choose which names to keep hidden
- Hide implementation details
Existential Types

In the polymorphic λ-calculus, we introduced *universal* quantification for types.

$$\tau ::= \cdots \mid X \mid \forall X. \tau$$
Existential Types

In the polymorphic λ-calculus, we introduced *universal* quantification for types.

$$\tau ::= \cdots \mid X \mid \forall X. \tau$$

If we have \forall, why not \exists? What would *existential* type quantification do?

$$\tau ::= \cdots \mid X \mid \exists X. \tau$$
Existential Types

Together with records, existential types let us *hide* the implementation details of an interface.
Existential Types

Together with records, existential types let us *hide* the implementation details of an interface.

\[\exists \text{Counter}. \]
\[\{ \text{new : Counter}, \]
\[\text{get : Counter} \rightarrow \text{int}, \]
\[\text{inc : Counter} \rightarrow \text{Counter} \} \]
Existential Types

Together with records, existential types let us hide the implementation details of an interface.

\[\exists \text{Counter.} \]

\[
\begin{align*}
&\{ \text{new : Counter,} \\
&\quad \text{get : Counter }\rightarrow\text{ int,} \\
&\quad \text{inc : Counter }\rightarrow\text{ Counter } \}
\end{align*}
\]

Here, the witness type might be \text{int}:

\[
\begin{align*}
&\{ \text{new : int,} \\
&\quad \text{get : int }\rightarrow\text{ int,} \\
&\quad \text{inc : int }\rightarrow\text{ int } \}
\end{align*}
\]
Existential Types

Let’s extend our STLC with existential types:

\[\tau ::= \textbf{int} \]
\[\mid \tau_1 \rightarrow \tau_2 \]
\[\mid \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \]
\[\mid \exists X. \tau \]
\[\mid X \]
Syntax & Dynamic Semantics

We’ll tag the values of existential types with the witness type.
Syntax & Dynamic Semantics

We’ll tag the values of existential types with the witness type.

A value has type $\exists X. \tau$ is a pair $\{\tau', \nu\}$ where ν has type $\tau\{\tau'/X\}$.
We’ll tag the values of existential types with the witness type.

A value has type $\exists X. \tau$ is a pair $\{\tau', \nu\}$ where ν has type $\tau\{\tau'/X\}$.

We’ll add new operations to construct and destruct these pairs:

$$\text{pack } \{\tau_1, e\} \text{ as } \exists X. \tau_2$$

$$\text{unpack } \{X, x\} = e_1 \text{ in } e_2$$
Syntax

\[e ::= x \]
\[\quad | \lambda x : \tau . \ e \]
\[\quad | \ e_1 \ e_2 \]
\[\quad | \ n \]
\[\quad | \ e_1 + e_2 \]
\[\quad | \ \{ \ l_1 = e_1, \ldots , l_n = e_n \ \} \]
\[\quad | \ e.\!l \]
\[\quad | \ \text{pack} \ \{ \tau_1 , e \} \ \text{as} \ \exists X . \ \tau_2 \]
\[\quad | \ \text{unpack} \ \{ X , x \} = e_1 \ \text{in} \ e_2 \]

\[v ::= n \]
\[\quad | \ \lambda x : \tau . \ e \]
\[\quad | \ \{ \ l_1 = v_1, \ldots , l_n = v_n \ \} \]
\[\quad | \ \text{pack} \ \{ \tau_1 , v \} \ \text{as} \ \exists X . \ \tau_2 \]
Dynamic Semantics

\[E ::= \ldots \]

| pack \(\{ \tau_1, E \} \) as \(\exists X. \tau_2 \)
| unpack \(\{ X, x \} = E \) in \(e \)

\[
\text{unpack } \{ X, x \} = (\text{pack } \{ \tau_1, v \} \text{ as } \exists Y. \tau_2) \text{ in } e \rightarrow e\{v/x\}\{\tau_1/X\}
\]
\[\Delta, \Gamma \vdash e : \tau_2 \{ \tau_1 / X \} \]

\[\Delta, \Gamma \vdash \text{pack} \{ \tau_1, e \} \text{ as } \exists X. \tau_2 . \exists X. \tau_2 \]
Static Semantics

\[\Delta, \Gamma \vdash e : \tau_2^{\{\tau_1/X\}} \]
\[\Delta, \Gamma \vdash \text{pack } \{\tau_1, e\} \text{ as } \exists \ X. \ \tau_2 : \exists \ X. \ \tau_2 \]

\[\Delta, \Gamma \vdash e_1 : \exists \ X. \ \tau_1 \quad \Delta \cup \{X\}, \Gamma, x : \tau_1 \vdash e_2 : \tau_2 \quad \Delta \vdash \tau_2 \text{ ok} \]
\[\Delta, \Gamma \vdash \text{unpack } \{X, x\} = e_1 \text{ in } e_2 : \tau_2 \]

The side condition \(\Delta \vdash \tau_2 \text{ ok}\) ensures that the existentially quantified type variable \(X\) does not appear free in \(\tau_2\).
Example

let counterADT =
 pack { int,
 { new = 0,
 get = \i:int. i,
 inc = \i:int. i + 1 } }
 as
 \exists Counter.
 { new : Counter,
 get : Counter \rightarrow int,
 inc : Counter \rightarrow Counter } in ...
Example

Here’s how to use the existential value `counterADT`:

```plaintext
unpack {T, c} = counterADT in
let y = c.new in
  c.get (c.inc (c.inc y))
```
Representation Independence

We can define alternate, equivalent implementations of our counter...

```
let counterADT =
  pack {{x:int},
    { new = {x = 0},
      get = λr:{x:int}. r.x,
      inc = λr:{x:int}. r.x + 1 } }

  as
  ∃Counter.
    { new : Counter,
      get : Counter → int,
      inc : Counter → Counter }

  in . . .
```
Existentials and Type Variables

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2$ ok prevents type variables from “leaking out” of unpack expressions.
Existentials and Type Variables

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2$ ok prevents type variables from “leaking out” of unpack expressions.

This rules out programs like this:

let $m =$
pack $\{\text{int}, \{a = 5, f = \lambda x : \text{int}. \ x + 1\}\}$ as $\exists X. \{a : X, f : X \rightarrow X\}$
in
unpack $\{T, x\} = m$ in $x.f\ x.\ a$

where the type of $x.f\ x.\ a$ is just T.
We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.
Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.

\[
\exists X. \tau \triangleq \forall Y. (\forall X. \tau \rightarrow Y) \rightarrow Y
\]

pack \{\tau_1, e\} as \exists X. \tau_2 \triangleq \forall Y. \lambda f : (\forall X. \tau_2 \rightarrow Y). f [\tau_1] e

unpack \{X, x\} = e_1 in e_2 \triangleq e_1 [\tau_2] (\forall X. \lambda x : \tau_1. e_2)

where \(e_1\) has type \(\exists X. \tau_1\) and \(e_2\) has type \(\tau_2\)