Lecture 25
Records and Subtyping
Records

We’ve seen binary products (pairs), and they generalize to \(n \)-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.
Records

We’ve seen binary products (pairs), and they generalize to \textit{n-ary} products (tuples).

\textit{Records} are a generalization of tuples where we mark each field with a label.

\textbf{Example:} \\
\{\texttt{foo = 32}, \texttt{bar = true}\}\\
is a record value with an integer field \texttt{foo} and a boolean field \texttt{bar}.
Records

We’ve seen binary products (pairs), and they generalize to \(n \)-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

\[
\{ \text{foo} = 32, \text{bar} = \text{true} \}
\]

is a record value with an integer field \text{foo} and a boolean field \text{bar}.

Its type is:

\[
\{ \text{foo: int, bar: bool} \}
\]
Syntax

\[l \in \mathcal{L} \]

\[e ::= \cdots | \{ l_1 = e_1, \ldots, l_n = e_n \} | e.l \]

\[v ::= \cdots | \{ l_1 = v_1, \ldots, l_n = v_n \} \]

\[\tau ::= \cdots | \{ l_1: \tau_1, \ldots, l_n: \tau_n \} \]
Dynamic Semantics

\[E ::= \ldots \]

\[\begin{align*}
| \{ l_1 = v_1, \ldots, l_{i-1} = v_{i-1}, l_i = E, l_{i+1} = e_{i+1}, \ldots, l_n = e_n \} \\
| E.l
\end{align*} \]

\[\{ l_1 = v_1, \ldots, l_n = v_n \}. l_i \rightarrow v_i \]

\[\{ \text{foo = 2} \}. \text{foo} \rightarrow 2 \]
∀i ∈ 1..n. \(\Gamma \vdash e_i : \tau_i \)

\[
\Gamma \vdash \{l_1 = e_1, \ldots, l_n = e_n\} : \{l_1 : \tau_1, \ldots, l_n : \tau_n\}
\]

\[
\Gamma \vdash e : \{l_1 : \tau_1, \ldots, l_n : \tau_n\}
\]

\[
\Gamma \vdash e.l_i : \tau_i
\]
Example

\[
\text{GETX} \triangleq \lambda p: \{ x : \text{int}, y : \text{int} \}. p.x
\]
Example

\[\text{GETX} \triangleq \lambda p : \{ x : \textbf{int}, y : \textbf{int}\}. p.x \]

\[\text{GETX} \{ x = 4, y = 2 \} \]
Example

\[
\text{GETX} \triangleq \lambda p : \{x : \textbf{int}, y : \textbf{int}\}. p.x
\]

\[
\text{GETX} \{x = 4, y = 2\}
\]

\[
\text{GETX} \{x = 4, y = 2, z = 42\}
\]
Example

\[
\text{GETX} \triangleq \lambda p : \{x : \text{int}, y : \text{int}\}. p . x
\]

\[
\text{GETX} \{x = 4, y = 2\}
\]

\[
\text{GETX} \{x = 4, y = 2, z = 42\} \quad \times
\]

\[
\text{GETX} \{y = 2, x = 4\} \quad \times
\]
Subtyping

Definition (Subtype)

\(\tau_1 \) is a *subtype* of \(\tau_2 \), written \(\tau_1 \leq \tau_2 \), if a program can use a value of type \(\tau_1 \) whenever it would use a value of type \(\tau_2 \).

If \(\tau_1 \leq \tau_2 \), we also say \(\tau_2 \) is the *supertype* of \(\tau_1 \).

\[
\exists x : \text{int}, y : \text{int} \quad x : \text{int}, y : \text{int} \leq \emptyset
\]
Subtyping

Definition (Subtype)

τ_1 is a subtype of τ_2, written $\tau_1 \leq \tau_2$, if a program can use a value of type τ_1 whenever it would use a value of type τ_2.

If $\tau_1 \leq \tau_2$, we also say τ_2 is the supertype of τ_1.

$$\Gamma \vdash e : \tau \quad \tau \leq \tau' \quad \text{Subsumption} \quad \Gamma \vdash e : \tau'$$

This typing rule says that if e has type τ and τ is a subtype of τ', then e also has type τ'.
Record Subtyping

We’ll define a new subtyping relation that works together with the subsumption rule.

\[\tau_1 \leq \tau_2 \]
Record Subtyping

This program isn’t well-typed (yet):

\[(\lambda p : \{x : \text{int}\}. \ p.\ x) \ \{x = 4, \ y = 2\}\]
Record Subtyping

This program isn’t well-typed (yet):

\[(\lambda p: \{x: \textbf{int}\}. p.x) \{x = 4, y = 2\} \]

So let’s add \textit{width subtyping}:

\[
\begin{align*}
\forall k \geq 0 \quad & \quad \{l_1: \tau_1, \ldots, l_{n+k}: \tau_{n+k}\} \leq \{l_1: \tau_1, \ldots, l_n: \tau_n\} \\
& \quad \{x: \textbf{int}, y: \textbf{int}\} \leq \{x: \textbf{int}\}
\end{align*}
\]
Record Subtyping

This program also doesn’t get stuck:

$$(\lambda p : \{x : \text{int}, y : \text{int}\}. p.x + p.y) \{y = 37, x = 5\}$$
Record Subtyping

This program also doesn’t get stuck:

$$(\lambda p : \{ x : \text{int}, y : \text{int} \}. p.x + p.y) \{ y = 37, x = 5 \}$$

So we can make it well-typed by adding permutation subtyping:

$$\pi \text{ is a permutation on } 1..n$$

$$\{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \leq \{ l_{\pi(1)} : \tau_{\pi(1)}, \ldots, l_{\pi(n)} : \tau_{\pi(n)} \}$$
Record Subtyping

Does this program get stuck? Is it well-typed?

\[(\lambda p : \{ x : \{ y : \textbf{int} \} \} . p . x . y) \{ x = \{ y = 4, z = 2 \} \}\]
Record Subtyping

Does this program get stuck? Is it well-typed?

\[(\lambda p : \{ x : \{ y : \texttt{int}\} \}. p.x.y) \{ x = \{ y = 4, z = 2\} \}\]

Let’s add depth subtyping:

\[
\forall i \in 1..n. \quad \tau_i \leq \tau'_i
\]

\[
\{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \leq \{ l_1 : \tau'_1, \ldots, l_n : \tau'_n \}
\]

\[
\{ x : \text{Cow} \} \leq \{ x : \text{Animal} \}
\]

\[
\{ x : \text{Cow} \} \leq \{ x : \text{Cow} \}
\]
Record Subtyping

Putting all three forms of record subtyping together:

\[
\forall i \in 1..n. \, \exists j \in 1..m. \, l'_i = l_j \land \tau_j \leq \tau'_i \Rightarrow \\
\{l_1: \tau_1, \ldots, l_m: \tau_m\} \leq \{l'_1: \tau'_1, \ldots, l'_n: \tau'_n\} \quad \text{S-RECORD}
\]
Standard Subtyping Rules

We always make the subtyping relation both reflexive and transitive.

\[
\begin{align*}
\tau \leq \tau & \quad \text{S-REFL} \\
\frac{\tau_1 \leq \tau_2 \quad \tau_2 \leq \tau_3}{\tau_1 \leq \tau_3} & \quad \text{S-TRANS}
\end{align*}
\]

Think of every type describing a set of values. Then \(\tau_1 \leq \tau_2 \) when \(\tau_1 \)'s values are a subset of \(\tau_2 \)'s.

\[
\left\{ \langle \{x : \text{int}\}, \{} \rangle, \ldots \right\}
\]
Top Type

It’s sometimes useful to define a *maximal* type with respect to subtyping:

\[
\tau ::= \cdots \mid T \mid \perp
\]

\[
\frac{\tau \leq T}{\text{S-Top}}
\]

Everything is a subtype of \(\top \), as in Java’s `Object` or Go’s `interface{}`.
Subtype All the Things!

We can also write subtyping rules for sums and products:

\[
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 + \tau_2 \leq \tau'_1 + \tau'_2} \quad \text{S-Sum}
\]
We can also write subtyping rules for sums and products:

\[
\frac{\tau_1 \leq \tau_1' \quad \tau_2 \leq \tau_2'}{\tau_1 + \tau_2 \leq \tau_1' + \tau_2'} \quad \text{S-Sum}
\]

\[
\frac{\tau_1 \leq \tau_1' \quad \tau_2 \leq \tau_2'}{\tau_1 \times \tau_2 \leq \tau_1' \times \tau_2'} \quad \text{S-PRODUCT}
\]
Function Types

How should we decide whether one function type is a subtype of another?

$$
	ext{???} \quad \frac{\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2}{S\text{-FUNCTION}}
$$
Desiderata

We’d like to have:

\[
\text{int} \to \{x: \text{int}, y: \text{int}\} \leq \text{int} \to \{x: \text{int}\}
\]
Desiderata

We’d like to have:

\[
\text{int} \rightarrow \{x: \text{int}, y: \text{int}\} \leq \text{int} \rightarrow \{x: \text{int}\}
\]

And:

\[
\{x: \text{int}\} \rightarrow \text{int} \leq \{x: \text{int}, y: \text{int}\} \rightarrow \text{int}
\]
We’d like to have:

\[\text{int} \rightarrow \{x:\text{int}, y:\text{int}\} \leq \text{int} \rightarrow \{x:\text{int}\} \]

And:

\[\{x:\text{int}\} \rightarrow \text{int} \leq \{x:\text{int}, y:\text{int}\} \rightarrow \text{int} \]

In general, to prove:

\[\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2 \]

we’ll require:

- Argument types are **contravariant**: \(\tau'_1 \leq \tau_1\)
- Return types are **covariant**: \(\tau_2 \leq \tau'_2\)
Function Subtyping

Putting these two pieces together, we get the subtyping rule for function types:

\[
\frac{\tau_1' \leq \tau_1 \quad \tau_2 \leq \tau_2'}{\tau_1 \rightarrow \tau_2 \leq \tau_1' \rightarrow \tau_2'} \quad \text{S-FUNCTION}
\]
Reference Subtyping

What should the relationship be between \(\tau \) and \(\tau' \) in order to have \(\tau \text{ ref} \leq \tau' \text{ ref} \)?
Example

If \(r' \) has type \(\tau' \textbf{ref} \), then \(!r' \) has type \(\tau' \).

Imagine we replace \(r' \) with \(r \), where \(r \) has a type \(\tau \textbf{ref} \) that we’ve somehow decided is a subtype of \(\tau' \textbf{ref} \).
Example

If \(r' \) has type \(\tau' \text{ ref} \), then \(!r' \) has type \(\tau' \).

Imagine we replace \(r' \) with \(r \), where \(r \) has a type \(\tau \text{ ref} \) that we’ve somehow decided is a subtype of \(\tau' \text{ ref} \).

Then \(!r \) should still produce something can be treated as a \(\tau' \). In other words, it should have a type that is a subtype of \(\tau' \).

So the referent type should be covariant:

\[
\tau \leq \tau' \\
\frac{\tau \text{ ref} \leq \tau' \text{ ref}}{
}\]
Example

If \(v \) has type \(\tau' \), then \(r' := v' \) should be legal.

If we replace \(r' \) with \(r \), then it must still be legal to assign \(r := v \). So \(!r \) would then produce a value of type \(\tau' \).
Example

If \(\nu \) has type \(\tau' \), then \(r' := \nu' \) should be legal.

If we replace \(r' \) with \(r \), then it must still be legal to assign \(r := \nu \). So \(!r \) would then produce a value of type \(\tau' \).

So the referent type should be contravariant!

\[
\frac{\tau' \leq \tau}{\tau \text{ ref } \leq \tau' \text{ ref}}
\]
Reference Subtyping

In fact, subtyping for reference types must be invariant: a reference type $\tau \text{ ref}$ is a subtype of $\tau' \text{ ref}$ if and only if $\tau \leq \tau'$ and $\tau' \leq \tau$.

$$
\frac{\tau \leq \tau' \quad \tau' \leq \tau}{\tau \text{ ref} \leq \tau' \text{ ref}} \quad \text{S-REF}
$$
Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!
Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[ ] arr = new Cow[ ] { new Cow("Alfonso") };
Animal a = arr[0];
```
Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[ ] arr = new Cow[ ] { new Cow(“Alfonso”) };
Animal a = arr[0];
```

but writing to the array can get into trouble:

```java
arr[0] = new Animal(“Brunhilda”);
```

Specifically, this generates an ArrayStoreException.