Lecture 17
Definitional Translation & Continuations
Definitional Translation

We know how to encode Booleans, conditionals, natural numbers, and recursion in λ-calculus.

Can we define a *real* programming language by translating everything in it into the λ-calculus?
Definitional Translation

We know how to encode Booleans, conditionals, natural numbers, and recursion in \(\lambda \)-calculus.

Can we define a *real* programming language by translating everything in it into the \(\lambda \)-calculus?

In *definitional translation*, we define a denotational semantics where the target is a simpler programming language instead of mathematical objects.
Multi-Argument λ-calculus

Let’s define a version of the λ-calculus that allows functions to take multiple arguments.

$$e ::= x \mid \lambda x_1, \ldots, x_n.\ e \mid e_0\ e_1\ \ldots\ e_n$$
Multi-Argument λ-calculus

We can define a CBV operational semantics:

$$E ::= [\cdot] \mid \nu_0 \ldots \nu_{i-1} E \ e_{i+1} \ldots \ e_n$$

$$e \rightarrow e' \quad \underbrace{\text{context}}_{\text{CONTEXT}}$$

$$E[e] \rightarrow E[e']$$

$$(\lambda x_1, \ldots, x_n. e_0) \ v_1 \ldots \ v_n \rightarrow (e_0\{v_1/x_1\}\{v_2/x_2\}) \ldots \{v_n/x_n\} \quad \beta$$

The evaluation contexts ensure that we evaluate multi-argument applications $e_0 \ e_1 \ldots \ e_n$ from left to right.
Definitional Translation

The multi-argument λ-calculus isn’t any more expressive than the pure λ-calculus.
Definitional Translation

The multi-argument \(\lambda \)-calculus isn’t any more expressive that the pure \(\lambda \)-calculus.

We can define a translation \(\mathcal{T}[\cdot] \) that takes an expression in the multi-argument \(\lambda \)-calculus and returns an equivalent expression in the pure \(\lambda \)-calculus.
Definitional Translation

The multi-argument λ-calculus isn’t any more expressive that the pure λ-calculus.

We can define a translation $T[\cdot]$ that takes an expression in the multi-argument λ-calculus and returns an equivalent expression in the pure λ-calculus.

$$
T[x] \triangleq x
$$
$$
T[\lambda x_1, \ldots, x_n. e] \triangleq \lambda x_1. \ldots \lambda x_n. T[e]
$$
$$
T[e_0 e_1 e_2 \ldots e_n] \triangleq (\ldots ((T[e_0] T[e_1]) T[e_2]) \ldots T[e_n])
$$

This translation curries the multi-argument λ-calculus.
Products (Pairs) and Let

Syntax

\[e ::= x \]
\[| \lambda x. e \]
\[| e_1 e_2 \]
\[| (e_1, e_2) \]
\[| #1 e \]
\[| #2 e \]
\[| \text{let } x = e_1 \text{ in } e_2 \]

\[\nu ::= \lambda x. e \]
\[| (\nu_1, \nu_2) \]
Products (Pairs) and Let

Evaluation Contexts

\[E ::= [] \]

\[| E \, e \]

\[| v \, E \]

\[| (E, e) \]

\[| (v, E) \]

\[| #1 \, E \]

\[| #2 \, E \]

\[| \text{let } x = E \text{ in } e_2 \]
Products (Pairs) and Let

Semantics

\[e \rightarrow e' \]
\[E[e] \rightarrow E[e'] \]

\[(\lambda x. e) v \rightarrow e\{v/x\} \]

\[\#1 (v_1, v_2) \rightarrow v_1 \]
\[\#2 (v_1, v_2) \rightarrow v_2 \]

\[\text{let } x = v \text{ in } e \rightarrow e\{v/x\} \]
Products (Pairs) and Let

Translation

\[T[x] = x \]
\[T[\lambda x. e] = \lambda x. T[e] \]
\[T[e_1 e_2] = T[e_1] T[e_2] \]
\[T[(e_1, e_2)] = (\lambda x. \lambda y. \lambda f. f x y) T[e_1] T[e_2] \]
\[T[#1 e] = T[e] (\lambda x. \lambda y. x) \]
\[T[#2 e] = T[e] (\lambda x. \lambda y. y) \]
\[T[\text{let } x = e_1 \text{ in } e_2] = (\lambda x. T[e_2]) T[e_1] \]
Laziness

Consider the call-by-name λ-calculus...

Syntax

\[e ::= x \]
\[\mid e_1 e_2 \]
\[\mid \lambda x. e \]

\[\nu ::= \lambda x. e \]

Semantics

\[e_1 \rightarrow e'_1 \]
\[e_1 e_2 \rightarrow e'_1 e_2 \]

\[(\lambda x. e_1) e_2 \rightarrow e_1\{e_2/x\} \]
Laziness

Translation

\[T[x] = x \ (\lambda y.\ y) \]
\[T[\lambda x.\ e] = \lambda x.\ T[e] \]
\[T[e_1\ e_2] = T[e_1] \ (\lambda z.\ T[e_2]) \quad \text{z is not a free variable of } e_2 \]
References

Syntax

\[e ::= x \]
\[\quad | \quad \lambda x. e \]
\[\quad | \quad e_0 \, e_1 \]

\[\nu ::= \lambda x. e \]
References

Syntax

\[e ::= \begin{array}{l}
 x \\
 \lambda x. e \\
 e_0 e_1 \\
 \text{ref } e
\end{array} \]

\[\nu ::= \lambda x. e \]
Syntax

\[e ::= x \]
\[\mid \lambda x. e \]
\[\mid e_0 e_1 \]
\[\mid \text{ref } e \]
\[\mid !e \]

\[\nu ::= \lambda x. e \]
References

Syntax

\[e ::= x \]
\[\quad | \lambda x.\ e \]
\[\quad | e_0\ e_1 \]
\[\quad | \text{ref } e \]
\[\quad | !e \]
\[\quad | e_1 ::= e_2 \]

\[\nu ::= \lambda x.\ e \]
Syntax

\[
e ::= x \quad \text{\textbf{\textit{SURFACE}}}

\mid \lambda x. \, e

\mid e_0 \, e_1

\mid \text{ref} \, e

\mid !e

\mid e_1 := e_2

\mid \ell

\nu ::= \lambda x. \, e
\]
References

Syntax

\[e ::= x \]

\[\quad | \quad \lambda x.\ e \]

\[\quad | \quad e_0\ e_1 \]

\[\quad | \quad \text{ref}\ e \]

\[\quad | \quad !e \]

\[\quad | \quad e_1 ::= e_2 \]

\[\quad | \quad \ell \]

\[v ::= \lambda x.\ e \]

\[\quad | \quad \ell \]
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid Ee \]
\[\mid \nu E \]
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[| \hspace{1em} E \, e \]
\[| \hspace{1em} v \, E \]
\[| \hspace{1em} \text{ref} \, E \]
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid E \ e \]
\[\mid \nu \ E \]
\[\mid \text{ref } E \]
\[\mid \text{!} E \]
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid E e \]
\[\mid \nu E \]
\[\mid \text{ref } E \]
\[\mid !E \]
\[\mid E ::= e \]
Evaluation Contexts

\[E ::= [\cdot] \]
\[E e \]
\[v E \]
\[\text{ref } E \]
\[!E \]
\[E ::= e \]
\[v ::= E \]
Semantics

\[\langle \sigma, e \rangle \to \langle \sigma', e' \rangle \]

\[\langle \sigma, (\lambda x. e) \, v \rangle \to \langle \sigma, e\{v/x\} \rangle \] \quad \beta

\[\langle \sigma, E[e] \rangle \to \langle \sigma', E[e'] \rangle \]

\[\langle \sigma, \text{ref } v \rangle \to \langle \sigma[l \mapsto v], \ell \rangle \]

\[\langle \sigma, !\ell \rangle \to \langle \sigma, v \rangle \]

\[\langle \sigma, \ell := v \rangle \to \langle \sigma[l \mapsto v], v \rangle \]

\[\sigma : \text{Loc} \to \text{Val} \]
References

Translation

...left as an exercise to the reader. ;-)
Adequacy

How do we know if a translation is correct?
Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

\[\forall e \in \text{Exp}_{\text{src}}. \text{ if } T[e] \rightarrow^*_{\text{trg}} \nu' \text{ then } \exists \nu. e \rightarrow^*_{\text{src}} \nu \]

and \(\nu' \) equivalent to \(\nu \)
Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

$$\forall e \in \text{Exp}_{src}. \text{ if } T[e] \rightarrow^*_{trg} v' \text{ then } \exists v. e \rightarrow^*_{src} v$$

and v' equivalent to v

...and every source evaluation should have a target evaluation:

Definition (Completeness)

$$\forall e \in \text{Exp}_{src}. \text{ if } e \rightarrow^*_{src} v \text{ then } \exists v'. T[e] \rightarrow^*_{trg} v'$$

and v' equivalent to v
Continuations

In the preceding translations, the control structure of the source language was translated directly into the corresponding control structure in the target language.

For example:

\[
\mathcal{T}[\lambda x. e] = \lambda x. \mathcal{T}[e] \\
\mathcal{T}[e_1 e_2] = \mathcal{T}[e_1] \mathcal{T}[e_2]
\]

What can go wrong with this approach?
Continuations

• A snippet of code that represents “the rest of the program”

• Can be used directly by programmers...

• ...or in program transformations by a compiler

• Make the control flow of the program explicit

• Also useful for defining the meaning of features like exceptions
Example

Consider the following expression:

$$(\lambda x. x) ((1 + 2) + 3) + 4$$
Example

Consider the following expression:

\[(\lambda x. x) ((1 + 2) + 3) + 4\]

If we make all of the continuations explicit, we obtain:

\[k_0 = \lambda \nu. (\lambda x. x) \nu\]
Example

Consider the following expression:

$$(\lambda x. x) ((1 + 2) + 3) + 4$$

If we make all of the continuations explicit, we obtain:

$$k_0 = \lambda v. (\lambda x. x) v$$
$$k_1 = \lambda a. k_0 (a + 4)$$
Example

Consider the following expression:

\[(\lambda x. x) \((1 + 2) + 3\) + 4\]

If we make all of the continuations explicit, we obtain:

\[k_0 = \lambda v. (\lambda x. x) v\]
\[k_1 = \lambda a. k_0 (a + 4)\]
\[k_2 = \lambda b. k_1 (b + 3)\]
Example

Consider the following expression:

$$(\lambda x. x) ((1 + 2) + 3) + 4$$

If we make all of the continuations explicit, we obtain:

$$k_0 = \lambda v. (\lambda x. x) \; v$$
$$k_1 = \lambda a. k_0 \; (a + 4)$$
$$k_2 = \lambda b. k_1 \; (b + 3)$$
$$k_3 = \lambda c. k_2 \; (c + 2)$$
Example

Consider the following expression:

$$(\lambda x. x) \ ((1 + 2) + 3) + 4$$

If we make all of the continuations explicit, we obtain:

$$k_0 = \lambda v. \ (\lambda x. x) \ v$$
$$k_1 = \lambda a. \ k_0 \ (a + 4)$$
$$k_2 = \lambda b. \ k_1 \ (b + 3)$$
$$k_3 = \lambda c. \ k_2 \ (c + 2)$$

The original expression is equivalent to $k_3 \ 1$, or:

$$(\lambda c. (\lambda b. (\lambda a. (\lambda v. (\lambda x. x) \ v) \ (a + 4))) \ (b + 3)) \ (c + 2)) \ 1$$
Example (Continued)

Recall that let $x = e$ in e' is syntactic sugar for $(\lambda x. e') e$.

Hence, we can rewrite the expression with continuations more succinctly as

```
let c = 1 in
let b = c + 2 in
let a = b + 3 in
let v = a + 4 in
(\lambda x. x) v
```
CPS Transformation

We write \(\text{CPS}[e] \ k = \ldots \) instead of \(\text{CPS}[e] = \lambda k \). \ldots

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS}[n] k = k \cdot n \]

\[\text{CPS}[] \equiv = \lambda k. \cdot k 5 \]

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS}[n] k = k \times n \]
\[\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \]

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS}[n] k = k n \]
\[\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \]
\[\text{CPS}[(e_1, e_2)] k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \]

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[CPS[n] k = k n \]

\[CPS[e_1 + e_2] k = CPS[e_1] (\lambda n. CPS[e_2] (\lambda m. k (n + m))) \]

\[CPS[(e_1, e_2)] k = CPS[e_1] (\lambda v. CPS[e_2] (\lambda w. k (v, w))) \]

\[CPS[#1 e] k = CPS[e] (\lambda v. k (#1 v)) \]

We write \(CPS[e] k = \ldots \) instead of \(CPS[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS}[n] k = k n \]
\[\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \]
\[\text{CPS}[(e_1, e_2)] k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \]
\[\text{CPS}[\#1 e] k = \text{CPS}[e] (\lambda v. k (#1 v)) \]
\[\text{CPS}[\#2 e] k = \text{CPS}[e] (\lambda v. k (#2 v)) \]

We write \(\text{CPS}[e] k = \ldots\) instead of \(\text{CPS}[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
\begin{align*}
\text{CPS}[n] k &= k n \\
\text{CPS}[e_1 + e_2] k &= \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \\
\text{CPS}[(e_1, e_2)] k &= \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \\
\text{CPS}[\#1 \, e] k &= \text{CPS}[e] (\lambda v. k (#1 v)) \\
\text{CPS}[\#2 \, e] k &= \text{CPS}[e] (\lambda v. k (#2 v)) \\
\text{CPS}[x] k &= k x
\end{align*}
\]

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
\begin{align*}
CPS[n] k &= kn \\
CPS[e_1 + e_2] k &= CPS[e_1] (\lambda n. CPS[e_2] (\lambda m. k (n + m))) \\
CPS[(e_1, e_2)] k &= CPS[e_1] (\lambda v. CPS[e_2] (\lambda w. k (v, w))) \\
CPS[#1 e] k &= CPS[e] (\lambda v. k (#1 v)) \\
CPS[#2 e] k &= CPS[e] (\lambda v. k (#2 v)) \\
CPS[x] k &= kx \\
CPS[\lambda x. e] k &= k (\lambda x. \lambda k'. CPS[e] k')
\end{align*}
\]

We write \(CPS[e] k = \ldots\) instead of \(CPS[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS}[n] k = k n \]
\[\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \]
\[\text{CPS}[(e_1, e_2)] k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \]
\[\text{CPS}[#1 e] k = \text{CPS}[e] (\lambda v. k (#1 v)) \]
\[\text{CPS}[#2 e] k = \text{CPS}[e] (\lambda v. k (#2 v)) \]
\[\text{CPS}[x] k = k x \]
\[\text{CPS}[\lambda x. e] k = k (\lambda x. \lambda k'. \text{CPS}[e] k') \]
\[\text{CPS}[e_1 e_2] k = \text{CPS}[e_1] (\lambda f. \text{CPS}[e_2] (\lambda v. f v k)) \]

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS}[n] \; k = k \; n \]
\[\text{CPS}[e_1 + e_2] \; k = \text{CPS}[e_1] \; (\lambda n. \; \text{CPS}[e_2] \; (\lambda m. \; k \; (n + m))) \]
\[\text{CPS}[(e_1, e_2)] \; k = \text{CPS}[e_1] \; (\lambda v. \; \text{CPS}[e_2] \; (\lambda w. \; k \; (v, w))) \]
\[\text{CPS}[\#1 \; e] \; k = \text{CPS}[e] \; (\lambda v. \; k \; (#1 \; v)) \]
\[\text{CPS}[\#2 \; e] \; k = \text{CPS}[e] \; (\lambda v. \; k \; (#2 \; v)) \]
\[\text{CPS}[x] \; k = k \; x \]
\[\text{CPS}[\lambda x. \; e] \; k = k \; (\lambda x. \; \lambda k'. \; \text{CPS}[e] \; k') \]
\[\text{CPS}[e_1 \; e_2] \; k = \text{CPS}[e_1] \; (\lambda f. \; \text{CPS}[e_2] \; (\lambda v. \; f \; v \; k)) \]

We write \(\text{CPS}[e] \; k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”