Lecture 17
Definitional Translation & Continuations
Definitional Translation

We know how to encode Booleans, conditionals, natural numbers, and recursion in λ-calculus.

Can we define a *real* programming language by translating everything in it into the λ-calculus?
Definitional Translation

We know how to encode Booleans, conditionals, natural numbers, and recursion in λ-calculus.

Can we define a real programming language by translating everything in it into the λ-calculus?

In definitional translation, we define a denotational semantics where the target is a simpler programming language instead of mathematical objects.
Multi-Argument λ-calculus

Let’s define a version of the λ-calculus that allows functions to take multiple arguments.

$$ e ::= x \mid \lambda x_1, \ldots, x_n. e \mid e_0 e_1 \ldots e_n $$
Multi-Argument λ-calculus

We can define a CBV operational semantics:

$$E ::= \cdot \mid v_0 \ldots v_{i-1} E e_{i+1} \ldots e_n$$

$$e \rightarrow e' \quad \frac{E[e] \rightarrow E[e']} \text{ Context}$$

$$\left(\lambda x_1, \ldots, x_n. e_0\right) v_1 \ldots v_n \rightarrow \left(e_0\{v_1/x_1\}\{v_2/x_2\}\ldots\{v_n/x_n\}\right) \beta$$

The evaluation contexts ensure that we evaluate multi-argument applications $e_0 \ e_1 \ldots e_n$ from left to right.
Definitional Translation

The multi-argument λ-calculus isn’t any more expressive than the pure λ-calculus.
Definitional Translation

The multi-argument \(\lambda \)-calculus isn’t any more expressive than the pure \(\lambda \)-calculus.

We can define a translation \(\mathcal{T} [\cdot] \) that takes an expression in the multi-argument \(\lambda \)-calculus and returns an equivalent expression in the pure \(\lambda \)-calculus.
Definitional Translation

The multi-argument λ-calculus isn’t any more expressive than the pure λ-calculus.

We can define a translation $\mathcal{T} [\cdot]$ that takes an expression in the multi-argument λ-calculus and returns an equivalent expression in the pure λ-calculus.

\[
\begin{align*}
\mathcal{T} [x] & \triangleq x \\
\mathcal{T} [\lambda x_1, \ldots, x_n. e] & \triangleq \lambda x_1. \ldots \lambda x_n. \mathcal{T} [e] \\
\mathcal{T} [e_0 e_1 e_2 \ldots e_n] & \triangleq \ldots ((\mathcal{T} [e_0] \mathcal{T} [e_1]) \mathcal{T} [e_2]) \ldots \mathcal{T} [e_n])
\end{align*}
\]

This translation curries the multi-argument λ-calculus.
Products (Pairs) and Let

Syntax

\[e ::= x \]
\[\quad | \lambda x. e \]
\[\quad | e_1 e_2 \]
\[\quad | (e_1, e_2) \]
\[\quad | \#1 e \]
\[\quad | \#2 e \]
\[\quad | \text{let } x = e_1 \text{ in } e_2 \]

\[\nu ::= \lambda x. e \]
\[\quad | (\nu_1, \nu_2) \]
Products (Pairs) and Let

Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid E e \]
\[\mid \nu E \]
\[\mid (E, e) \]
\[\mid (\nu, E) \]
\[\mid \#1 E \]
\[\mid \#2 E \]
\[\mid \text{let } x = E \text{ in } e_2 \]
Products (Pairs) and Let

Semantics

\[e \rightarrow e' \]

\[E[e] \rightarrow E[e'] \]

\[(\lambda x. e) \, v \rightarrow e\{v/x\} \] \[\beta\]

\[\#1 \, (v_1, v_2) \rightarrow v_1 \]

\[\#2 \, (v_1, v_2) \rightarrow v_2 \]

\[\text{let } x = v \text{ in } e \rightarrow e\{v/x\} \]
Products (Pairs) and Let

Translation

\[\mathcal{T}[x] = x \]
\[\mathcal{T}[\lambda x. e] = \lambda x. \mathcal{T}[e] \]
\[\mathcal{T}[e_1 e_2] = \mathcal{T}[e_1] \mathcal{T}[e_2] \]
\[\mathcal{T}[(e_1, e_2)] = (\lambda x. \lambda y. \lambda f. f x y) \mathcal{T}[e_1] \mathcal{T}[e_2] \]
\[\mathcal{T}[\#1 e] = \mathcal{T}[e] (\lambda x. \lambda y. x) \]
\[\mathcal{T}[\#2 e] = \mathcal{T}[e] (\lambda x. \lambda y. y) \]
\[\mathcal{T}[\text{let } x = e_1 \text{ in } e_2] = (\lambda x. \mathcal{T}[e_2]) \mathcal{T}[e_1] \]
Laziness

Consider the call-by-name λ-calculus...

Syntax

\[e ::= x \]
\[\mid e_1 e_2 \]
\[\mid \lambda x. \ e \]

\[v ::= \lambda x. \ e \]

Semantics

\[e_1 \rightarrow e'_1 \]
\[\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2} \]
\[\frac{(\lambda x. \ e_1) \ e_2 \rightarrow e_1 \{ e_2 / x \}}{\beta} \]
Laziness

Translation

\[T[x] = x \ (\lambda y. y) \]
\[T[\lambda x. e] = \lambda x. T[e] \]
\[T[e_1 e_2] = T[e_1] \ (\lambda z. T[e_2]) \quad z \text{ is not a free variable of } e_2 \]
Syntax

\[e ::= x \]
\[\quad | \lambda x. e \]
\[\quad | e_0 \ e_1 \]

\[\nu ::= \lambda x. e \]
Syntax

\[
e ::= x \\
 \mid \lambda x. e \\
 \mid e_0 \; e_1 \\
 \mid \text{ref } e
\]

\[
\nu ::= \lambda x. e
\]
References

Syntax

\[e ::= x \]
\[\quad | \lambda x. e \]
\[\quad | e_0 e_1 \]
\[\quad | \text{ref } e \]
\[\quad | !e \]

\[\nu ::= \lambda x. e \]
References

Syntax

\[e ::= x \]
\[\quad | \lambda x. e \]
\[\quad | e_0 \ e_1 \]
\[\quad | \text{ref } e \]
\[\quad | !e \]
\[\quad | e_1 ::= e_2 \]

\[\nu ::= \lambda x. e \]

\[*e_1 = e_2 \]
References

Syntax

\[e ::= x \]
\[\quad | \lambda x. e \]
\[\quad | e_0 \mathbin{e_1} \]
\[\quad | \text{ref } e \]
\[\quad | !e \]
\[\quad | e_1 ::= e_2 \]
\[\quad | \ell \]

\[\nu ::= \lambda x. e \]
References

Syntax

\[e ::= x \]
\[\quad | \lambda x. \ e \]
\[\quad | e_0 \ e_1 \]
\[\quad | \text{ref} \ e \]
\[\quad | !e \]
\[\quad | e_1 ::= e_2 \]
\[\quad | \ell \]

\[\nu ::= \lambda x. \ e \]
\[\quad | \ell \]
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid E \ e \]
\[\mid v \ E \]
Evaluation Contexts

\[E ::= [\cdot] \]
\[| \ E e \]
\[| \nu E \]
\[| \text{ref } E \]
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[| E e \]
\[| v E \]
\[| \text{ref } E \]
\[| !E \]
References

Evaluation Contexts

\[E ::= [\cdot] \]

| \(E e \) |
| \(\nu E \) |
| \(\text{ref } E \) |
| \(!E \) |
| \(E := e \) |
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[| E e \]
\[| v E \]
\[| \text{ref } E \]
\[| !E \]
\[| E ::= e \]
\[| v ::= E \]
References

Semantics

\[
\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \quad \sigma : \text{Loc} \rightarrow \text{Val}
\]

\[
\begin{align*}
\langle \sigma, e \rangle & \rightarrow \langle \sigma', e' \rangle \\
\langle \sigma, E[e] \rangle & \rightarrow \langle \sigma', E[e'] \rangle \\
\langle \sigma, (\lambda x. e) v \rangle & \rightarrow \langle \sigma, e[v/x] \rangle \\
\ell & \notin \text{dom}(\sigma) \\
\langle \sigma, \text{ref } v \rangle & \rightarrow \langle \sigma[\ell \mapsto v], \ell \rangle \\
\sigma(\ell) & = v \\
\langle \sigma, !l \rangle & \rightarrow \langle \sigma, v \rangle
\end{align*}
\]

\[
\langle \sigma, l := v \rangle \rightarrow \langle \sigma[l \mapsto v], v \rangle
\]
Translation

...left as an exercise to the reader. ;-)}
Adequacy

How do we know if a translation is correct?
Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

\[\forall e \in \text{Exp}_{\text{src}}. \text{if } \mathcal{T}[e] \xrightarrow{\text{trg}}^* \nu' \text{ then } \exists \nu. e \xrightarrow{\text{src}}^* \nu \]

and \(\nu' \) equivalent to \(\nu \)
Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

$$\forall e \in \text{Exp}_{\text{src}}. \text{ if } \mathcal{T}[e] \xrightarrow{*_{\text{trg}}} v' \text{ then } \exists v. e \xrightarrow{*_{\text{src}}} v$$

and v' equivalent to v

...and every source evaluation should have a target evaluation:

Definition (Completeness)

$$\forall e \in \text{Exp}_{\text{src}}. \text{ if } e \xrightarrow{*_{\text{src}}} v \text{ then } \exists v'. \mathcal{T}[e] \xrightarrow{*_{\text{trg}}} v'$$

and v' equivalent to v
Continuations

In the preceding translations, the control structure of the source language was translated directly into the corresponding control structure in the target language.

For example:

\[
\mathcal{\tau}[\lambda x. \ e] = \lambda x. \mathcal{\tau}[e]
\]
\[
\mathcal{\tau}[e_1 \ e_2] = \mathcal{\tau}[e_1] \mathcal{\tau}[e_2]
\]

What can go wrong with this approach?
Continuations

- A snippet of code that represents “the rest of the program”
- Can be used directly by programmers...
- ...or in program transformations by a compiler
- Make the control flow of the program explicit
- Also useful for defining the meaning of features like exceptions
Example

Consider the following expression:

$$(\lambda x. x) ((1 + 2) + 3) + 4$$
Example

Consider the following expression:

$$(\lambda x. x) ((1 + 2) + 3) + 4$$

If we make all of the continuations explicit, we obtain:

$$k_0 = \lambda v. (\lambda x. x) \; v$$
Example

Consider the following expression:

\[(\lambda x. x) \left((1 + 2) + 3 \right) + 4 \]

If we make all of the continuations explicit, we obtain:

\[k_0 = \lambda v. (\lambda x. x) \, v\]
\[k_1 = \lambda a. k_0 (a + 4)\]
Example

Consider the following expression:

\[(\lambda x. x) ((1 + 2) + 3) + 4\]

If we make all of the continuations explicit, we obtain:

\[k_0 = \lambda v. (\lambda x. x) \, v\]
\[k_1 = \lambda a. \, k_0 \, (a + 4)\]
\[k_2 = \lambda b. \, k_1 \, (b + 3)\]
Example

Consider the following expression:

\[(\lambda x. x) ((1 + 2) + 3) + 4\]

If we make all of the continuations explicit, we obtain:

\[k_0 = \lambda v. (\lambda x. x) \, v\]
\[k_1 = \lambda a. k_0 \, (a + 4)\]
\[k_2 = \lambda b. k_1 \, (b + 3)\]
\[k_3 = \lambda c. k_2 \, (c + 2)\]
Example

Consider the following expression:

\[(\lambda x. x) ((1 + 2) + 3) + 4\]

If we make all of the continuations explicit, we obtain:

\[k_0 = \lambda v. (\lambda x. x) v\]
\[k_1 = \lambda a. k_0 (a + 4)\]
\[k_2 = \lambda b. k_1 (b + 3)\]
\[k_3 = \lambda c. k_2 (c + 2)\]

The original expression is equivalent to \(k_3\) 1, or:

\[(\lambda c. (\lambda b. (\lambda a. (\lambda v. (\lambda x. x) v) (a + 4)) (b + 3)) (c + 2)) 1\]
Example (Continued)

Recall that let \(x = e \) in \(e' \) is syntactic sugar for \((\lambda x. e') \ e \).

Hence, we can rewrite the expression with continuations more succinctly as

\[
\begin{align*}
\text{let } c &= 1 \text{ in} \\
\text{let } b &= c + 2 \text{ in} \\
\text{let } a &= b + 3 \text{ in} \\
\text{let } \nu &= a + 4 \text{ in} \\
(\lambda x. x) \ \nu
\end{align*}
\]
CPS Transformation

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS} [n] k = k n \]

We write \(\text{CPS} [e] k = \ldots \) instead of \(\text{CPS} [e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
CPS[n] k = k n \\
CPS[e_1 + e_2] k = CPS[e_1] (\lambda n. CPS[e_2] (\lambda m. k (n + m)))
\]

We write \(CPS[e] k = \ldots \) instead of \(CPS[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS}[n] k = k n\]
\[\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m)))\]
\[\text{CPS}[(e_1, e_2)] k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w)))\]

We write \(\text{CPS}[e] k \ldots\) instead of \(\text{CPS}[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
\text{CPS}[n] \ k = k \ n \\
\text{CPS}[e_1 + e_2] \ k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \\
\text{CPS}[(e_1, e_2)] \ k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \\
\text{CPS}[\#1 \ e] \ k = \text{CPS}[e] (\lambda v. k (\#1 v))
\]

We write \(\text{CPS}[e] \ k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
\begin{align*}
\text{CPS}[n] & \, k = \, k \, n \\
\text{CPS}[e_1 + e_2] & \, k = \text{CPS}[e_1] \, (\lambda n. \text{CPS}[e_2] \, (\lambda m. \, k \, (n + m))) \\
\text{CPS}[(e_1, e_2)] & \, k = \text{CPS}[e_1] \, (\lambda v. \text{CPS}[e_2] \, (\lambda w. \, k \, (v, w))) \\
\text{CPS}[^\#1 \, e] & \, k = \text{CPS}[e] \, (\lambda v. \, k \, (^\#1 \, v)) \\
\text{CPS}[^\#2 \, e] & \, k = \text{CPS}[e] \, (\lambda v. \, k \, (^\#2 \, v)) \\
\end{align*}
\]

We write \(\text{CPS}[e] \, k = \ldots\) instead of \(\text{CPS}[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
\text{CPS}[n] k = k \cdot n \\
\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \\
\text{CPS}[(e_1, e_2)] k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \\
\text{CPS}[\#1 e] k = \text{CPS}[e] (\lambda v. k (#1 v)) \\
\text{CPS}[\#2 e] k = \text{CPS}[e] (\lambda v. k (#2 v)) \\
\text{CPS}[x] k = k \cdot x
\]

We write \(\text{CPS}[e] k = \ldots\) instead of \(\text{CPS}[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh.”
\textbf{CPS Transformation}

\[
\begin{align*}
\text{CPS}[n] k &= k \, n \\
\text{CPS}[e_1 + e_2] k &= \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \\
\text{CPS}[(e_1, e_2)] k &= \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \\
\text{CPS}[\#1 \, e] k &= \text{CPS}[e] (\lambda v. k (\#1 \, v)) \\
\text{CPS}[\#2 \, e] k &= \text{CPS}[e] (\lambda v. k (\#2 \, v)) \\
\text{CPS}[x] k &= k \, x \\
\text{CPS}[\lambda x. \, e] k &= k (\lambda x. \, \lambda k'. \text{CPS}[e] \, k')
\end{align*}
\]

We write \(\text{CPS}[e] \, k = \ldots\) instead of \(\text{CPS}[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
\begin{align*}
\text{CPS}[n] k &= k \, n \\
\text{CPS}[e_1 + e_2] k &= \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \\
\text{CPS}[(e_1, e_2)] k &= \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \\
\text{CPS}[\#1 \, e] k &= \text{CPS}[e] (\lambda v. k (\#1 \, v)) \\
\text{CPS}[\#2 \, e] k &= \text{CPS}[e] (\lambda v. k (\#2 \, v)) \\
\text{CPS}[x] k &= k \, x \\
\text{CPS}[\lambda x. \, e] k &= k (\lambda x. \lambda k'. \text{CPS}[e] \, k') \\
\text{CPS}[e_1 \, e_2] k &= \text{CPS}[e_1] (\lambda f. \text{CPS}[e_2] (\lambda v. f \, v \, k))
\end{align*}
\]

We write \(\text{CPS}[e] \, k = \ldots\) instead of \(\text{CPS}[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh.”