Lecture 16
Programming in the λ-calculus
Review: Church Booleans

We can encode TRUE, FALSE, and IF, as:

\[
\text{TRUE} \triangleq \lambda x. \, \lambda y. \, x \\
\text{FALSE} \triangleq \lambda x. \, \lambda y. \, y \\
\text{IF} \triangleq \lambda b. \, \lambda t. \, \lambda f. \, b \, t \, f
\]

This way, IF behaves how it ought to:

\[
\text{IF TRUE} \, v_t \, v_f \to^* \, v_t \\
\text{IF FALSE} \, v_t \, v_f \to^* \, v_f
\]
Review: Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to $x \ n$ times.

$$
\bar{0} \triangleq \lambda f. \lambda x. x \\
\bar{1} \triangleq \lambda f. \lambda x. f x \\
\bar{2} \triangleq \lambda f. \lambda x. f (f x)
$$

We can define other functions on integers:

$$
\text{SUCC} \triangleq \lambda n. \lambda f. \lambda x. f (n f x)
$$
Review: Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

\[
\begin{align*}
\overline{0} & \triangleq \lambda f. \lambda x. x \\
\overline{1} & \triangleq \lambda f. \lambda x. f x \\
\overline{2} & \triangleq \lambda f. \lambda x. f(f x)
\end{align*}
\]

We can define other functions on integers:

\[
\begin{align*}
\text{SUCC} & \triangleq \lambda n. \lambda f. \lambda x. f(n f x) \\
\text{PLUS} & \triangleq \lambda n_1. \lambda n_2. n_1 \text{SUCC} n_2
\end{align*}
\]
Review: Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

\[
\begin{align*}
\bar{0} & \triangleq \lambda f. \lambda x. x \\
\bar{1} & \triangleq \lambda f. \lambda x. f x \\
\bar{2} & \triangleq \lambda f. \lambda x. f (f x)
\end{align*}
\]

We can define other functions on integers:

\[
\begin{align*}
\text{SUCC} & \triangleq \lambda n. \lambda f. \lambda x. f (n f x) \\
\text{PLUS} & \triangleq \lambda n_1. \lambda n_2. n_1 \text{SUCC} n_2 \\
\text{TIMES} & \triangleq \lambda n_1. \lambda n_2. n_1 (\text{PLUS} n_2) \bar{0}
\end{align*}
\]
Review: Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

\[
\begin{align*}
\overline{0} & \equiv \lambda f. \lambda x. x \\
\overline{1} & \equiv \lambda f. \lambda x. f x \\
\overline{2} & \equiv \lambda f. \lambda x. f (f x)
\end{align*}
\]

We can define other functions on integers:

\[
\begin{align*}
\text{SUCC} & \equiv \lambda n. \lambda f. \lambda x. f (n f x) \\
\text{PLUS} & \equiv \lambda n_1. \lambda n_2. n_1 \text{SUCC} n_2 \\
\text{TIMES} & \equiv \lambda n_1. \lambda n_2. n_1 (\text{PLUS} n_2) \overline{0} \\
\text{ISZERO} & \equiv \lambda n. n (\lambda z. \text{FALSE}) \text{TRUE}
\end{align*}
\]
Recursive Functions

How would we write recursive functions like factorial?
Recursive Functions

How would we write recursive functions like factorial?

We’d like to write it like this...

\[
\text{FACT} \triangleq \lambda n. \text{IF} (\text{ISZERO} \ n) 1 (\text{TIMES} \ n \ (\text{FACT} \ (\text{PRED} \ n)))
\]
Recursive Functions

How would we write recursive functions like factorial?

We’d like to write it like this...

$\text{FACT} \equiv \lambda n. \text{IF (ISZERO } n \text{) } 1 \text{ (TIMES } n \text{ (FACT (PRED } n \text{)))}$

In slightly more readable notation this is...

$\text{FACT} \equiv \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{FACT } (n - 1)$

...but this is an equation, not a definition!
Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive equation on the previous slide.
Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT’ that takes a function f as an argument. Then, for “recursive” calls, it uses $f f$:

$$\text{FACT’ } \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((ff) (n - 1))$$
Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT’ that takes a function f as an argument. Then, for “recursive” calls, it uses f f:

\[\text{FACT'} \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((ff) (n - 1)) \]

Then define FACT as FACT’ applied to itself:

\[\text{FACT} \triangleq \text{FACT'} \text{ FACT'} \]
Example

Let’s try evaluating FACT on 3...

FACT 3
Example

Let’s try evaluating FACT on 3...

\[\text{FACT 3} = (\text{FACT'} \ \text{FACT'}) \ 3 \]
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= ((λf. λn. if n = 0 then 1 else n × ((ff) (n − 1))) FACT’) 3
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= ((λf. λn. if n = 0 then 1 else n × ((ff) (n − 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= ((λf. λn. if n = 0 then 1 else n × ((ff) (n − 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3
→ if 3 = 0 then 1 else 3 × ((FACT’ FACT’) (3 − 1))
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= ((λf. λn. if n = 0 then 1 else n × ((f f) (n − 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3
→ if 3 = 0 then 1 else 3 × ((FACT’ FACT’) (3 − 1))
→ 3 × ((FACT’ FACT’) (3 − 1))
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3
= ((λf. λn. if n = 0 then 1 else n × ((ff) (n − 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3
→ if 3 = 0 then 1 else 3 × ((FACT’ FACT’) (3 − 1))
→ 3 × ((FACT’ FACT’) (3 − 1))
= 3 × (FACT (3 − 1))
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= (((\lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times ((f f) (n - 1)))) FACT’) 3
→ (\lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times ((\text{FACT’ FACT’} (n - 1)))) 3
→ \textbf{if } 3 = 0 \textbf{ then } 1 \textbf{ else } 3 \times ((\text{FACT’ FACT’} (3 - 1))
→ \textbf{if } 3 = 0 \textbf{ then } 1 \textbf{ else } 3 \times ((\text{FACT’ FACT’} (3 - 1))
= 3 \times (\text{FACT} (3 - 1))
→ ...
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= (((λf.λn. if n = 0 then 1 else n × ((f f) (n – 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n – 1))) 3
→ if 3 = 0 then 1 else 3 × ((FACT’ FACT’) (3 – 1))
→ 3 × ((FACT’ FACT’) (3 – 1))
= 3 × (FACT (3 – 1))
→ ...
→ 3 × 2 × 1 × 1
→ * 6
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f'\ f'$.
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$. There is another way: fixed points!
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$. There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (f (n - 1))$$
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' \ f'$. There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1))$$

Recall that if g is a fixed point of G, then $G \ g = g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$g \ 5 = (G \ g) \ 5$$
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function \(f' \) that takes itself as an argument and uses self-application for recursive calls, and then define \(f \) as \(f' f' \).

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

\[
G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1))
\]

Recall that if \(g \) if a fixed point of \(G \), then \(G \ g = g \). To see that any fixed point \(g \) is a real factorial function, try evaluating it:

\[
g \ 5 \ = \ (G \ g) \ 5
\]

\[
\rightarrow^* 5 \times (g \ 4)
\]
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' \ f'$. There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1))$$

Recall that if g if a fixed point of G, then $G \ g = g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$g \ 5 = (G \ g) \ 5$$

$$\rightarrow^* 5 \times (g \ 4)$$

$$= 5 \times ((G \ g) \ 4)$$
Fixed point combinators

How can we generate the fixed point of G?

In denotational semantics, finding fixed points took a lot of math. In the λ-calculus, we just need a suitable combinator...
Y Combinator

The (infamous) Y combinator is defined as

$$Y \triangleq \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

We say that Y is a fixed point combinator because Y f is a fixed point of f (for any lambda term f).
Y Combinator

The (infamous) Y combinator is defined as

\[Y \triangleq \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

We say that Y is a **fixed point combinator** because \(Y f \) is a fixed point of \(f \) (for any lambda term \(f \)).

What happens when we evaluate \(Y G \) under CBV?

\[Y G = (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) G \]

\[\rightarrow (\lambda x. G (x x)) (\lambda x. G (x x)) \]

\[\rightarrow G (\lambda x. G (x x)) (\lambda x. G (x x)) \]

\[\rightarrow G (G (\lambda x. G (x x))) (G (\lambda x. G (x x))) \]
Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.
Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

\[
Z \triangleq \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))
\]

\[
\lambda y. e y
\]
Example

Let’s see Z in action, on our function G.

FACT
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} \quad = \quad Z \ G
\]
Example

Let’s see Z in action, on our function G.

\[
\begin{align*}
\text{FACT} &= Z \ G \\
&= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G
\end{align*}
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT}\\
\equiv Z \ G\\
\equiv (\lambda f. (\lambda x. f (\lambda y. x \ x \ y)) (\lambda x. f (\lambda y. x \ x \ y))) \ G\\
\rightarrow (\lambda x. G (\lambda y. x \ x \ y)) (\lambda x. G (\lambda y. x \ x \ y))
\]
Example

Let’s see Z in action, on our function G.

FACT
$\quad = \quad Z \ G$
$\quad = \quad (\lambda f. (\lambda x. f (\lambda y. x \ x \ y)) (\lambda x. f (\lambda y. x \ x \ y))) \ G$
$\quad \rightarrow \quad (\lambda x. G (\lambda y. x \ x \ y)) (\lambda x. G (\lambda y. x \ x \ y))$
$\quad \rightarrow \quad G (\lambda y. (\lambda x. G (\lambda y. x \ x \ y)) (\lambda x. G (\lambda y. x \ x \ y))) \ y)$
Example

Let’s see Z in action, on our function G.

\[
\text{FACT}
= Z \ G
= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G
\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))
\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)
= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n - 1)))
\quad (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)
\]
Example

Let’s see Z in action, on our function G.

FACT

\[Z \equiv G \]

\[\equiv (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G \]

\[\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \]

\[\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \]

\[\equiv (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1))) \]

\[(\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \]

\[\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \]

\[\quad \text{else } n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n - 1)) \]
Example

Let’s see Z in action, on our function G.

\[
\begin{align*}
\text{FACT} & \quad = \quad Z \ G \\
& \quad = \quad (\lambda f. (\lambda x. f(\lambda y. x y)) (\lambda x. f(\lambda y. x y))) \ G \\
& \quad \rightarrow \quad (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) \\
& \quad \rightarrow \quad G (\lambda y. (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) y) \\
& \quad = \quad (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1))) \\
& \quad \quad (\lambda y. (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) y) \\
& \quad \rightarrow \quad \lambda n. \text{if } n = 0 \text{ then } 1 \\
& \quad \quad \text{else } n \times ((\lambda y. (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) y) (n - 1)) \\
& \quad =_\beta \quad \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (\lambda y. (Z \ G) y) (n - 1)
\end{align*}
\]
Example

Let’s see Z in action, on our function G.

\[
\begin{align*}
\text{FACT} & \\
& = Z \ G \\
& = (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G \\
& \rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \\
& \rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
& = (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1))) \\
& \quad (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
& \rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \\
& \quad \text{else } n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n - 1)) \\
& \equiv \beta \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (\lambda y. (Z \ G) y) (n - 1) \\
& \equiv \beta \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (Z \ G)(n - 1)
\end{align*}
\]
Let’s see Z in action, on our function G.

FACT

= Z G

= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G

→ (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))

→ G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)

= (\lambda f. \lambda n. if n = 0 then 1 else n \times (f (n − 1)))

(\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)

→ \lambda n. if n = 0 then 1

else n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n − 1))

= \beta \lambda n. if n = 0 then 1 else n \times (\lambda y. (Z G) y) (n − 1)

= \beta \lambda n. if n = 0 then 1 else n \times (Z G (n − 1))

= \lambda n. if n = 0 then 1 else n \times (FACT (n − 1))
Other fixed point combinators

There are many (indeed infinitely many) fixed-point combinators. Here’s a cute one:

$$Y_k \triangleq (L L)$$

where

$$L \triangleq \lambda abcdefghijklmnopqrstuvwxyzr. (r (t h i s i s a f i x e d p o i n t c o m b i n a t o r))$$
Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.
Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$\Theta f = f (\Theta f).$$
Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$\Theta f = f (\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f (\Theta f)$$

$$f(x) = x^2$$

$$f = \lambda x. x^2$$
Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$\Theta f = f (\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f (\Theta f)$$

Now use the recursion removal trick:

$$\Theta' \triangleq \lambda t. \lambda f. f (t t f)$$

$$\Theta \triangleq \left(\Theta \Theta' \right)$$
Example

FACT = Θ G
\theta \text{ Example}

\text{FACT} = \Theta G

= ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f))) G
θ Example

\[
\text{FACT} = \Theta G \\
= ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f))) G \\
\rightarrow (\lambda f. f ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) f)) G
\]
FACT = Θ G

= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
\begin{align*}
\text{FACT} &= \Theta G \\
&= ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G \\
&\to (\lambda f. f(((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G \\
&\to G ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) G) \\
&= G (\Theta G)
\end{align*}
\[\theta \text{ Example} \]

\[
\text{FACT} = \Theta G
\]

\[
= ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f))) G
\]

\[
\rightarrow (\lambda f. f ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) f)) G
\]

\[
\rightarrow G ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) G)
\]

\[
= G (\Theta G)
\]

\[
= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1))) (\Theta G)
\]

\[
\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((\Theta G)(n-1))
\]

\[
= \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT}(n-1))
\]
Review: Call-by-Value

Here are the syntax and CBV semantics of λ-calculus:

$$e ::= x \mid \lambda x. e \mid e_1 e_2$$

$$v ::= \lambda x. e$$

$$e_1 \to e'_1 \quad e \to e'$$

$$e_1 e_2 \to e'_1 e_2 \quad v e \to v e'$$

$$\beta$$

$$(\lambda x. e) v \to e\{v/x\}$$

There are two kinds of rules: congruence rules that specify evaluation order and computation rules that specify the “interesting” reductions.
Evaluation contexts let us separate out these two kinds of rules.

\[e = (\lambda y \cdot y) \ (\lambda z \cdot z) \ \ (\lambda x \cdot x) \]

\[E = [\cdot] \ (\lambda x \cdot x) \]

\[E[e_I] = e \]

\[e_I = (\lambda y \cdot y) \ (\lambda z \cdot z) \]

\[e'_I = \lambda z \cdot z \]
Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” in it: a single occurrence of the special symbol $[\cdot]$ in place of a subexpression.

$$E ::= [\cdot] \mid E\ e \mid \nu E$$

$$\left((\lambda x.\ x) \ (\lambda x.\ x) \right) \ (\lambda x.\ x)$$

$$E = [\cdot]\ (\lambda x.\ x)$$

$$E \neq ((\lambda x.\ x) \ (\lambda x.\ x)) \ [\cdot]$$
Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” in it: a single occurrence of the special symbol $[\cdot]$ in place of a subexpression.

$$E ::= [\cdot] \mid E \ e \mid \nu \ E$$

We write $E[e]$ to mean the evaluation context E where the hole has been replaced with the expression e.
Examples

\[E_1 = [\cdot] (\lambda x. x) \]
\[E_1[\lambda y. y y] = (\lambda y. y y) \lambda x. x \]
Examples

$E_1 = [\cdot] (\lambda x. x)$

$E_1[\lambda y. y y] = (\lambda y. y y) \lambda x. x$

$E_2 = (\lambda z. z z) [\cdot]$

$E_2[\lambda x. \lambda y. x] = (\lambda z. z z) (\lambda x. \lambda y. x)$
Examples

\[E_1 = \mathbf{[]} (\lambda x. x) \]

\[E_1[\lambda y. y y] = (\lambda y. y y) \lambda x. x \]

\[E_2 = (\lambda z. z z) \mathbf{[]} \]

\[E_2[\lambda x. \lambda y. x] = (\lambda z. z z) (\lambda x. \lambda y. x) \]

\[E_3 = (\mathbf{[]} \lambda x. x x) (\lambda y. y) (\lambda y. y) \]

\[E_3[\lambda f. \lambda g. f g] = ((\lambda f. \lambda g. f g) \lambda x. x x) (\lambda y. y) (\lambda y. y) \]
CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation semantics for the CBV λ-calculus with just two rules: one for evaluation contexts, and one for β-reduction.
CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation semantics for the CBV λ-calculus with just two rules: one for evaluation contexts, and one for β-reduction.

With this syntax:

$$E ::= [\cdot] \mid E \ e \mid \nu \ E$$

The small-step rules are:

$$e \rightarrow e' \quad \frac{}{E[e] \rightarrow E[e']}$$

$$\frac{}{(\lambda x. \ e) \ \nu \rightarrow e\{\nu/x\}^\beta}$$

$$\frac{}{(\lambda x. \ x) \ (\lambda y. \ y) \rightarrow \lambda y. \ y}$$

$$\frac{\nu = [\cdot]}{e = _}$$
We can also define the semantics of CBN λ-calculus with evaluation contexts.
CBN With Evaluation Contexts

We can also define the semantics of CBN λ-calculus with evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

$$E ::= [\cdot] \mid E\ e$$
CBN With Evaluation Contexts

We can also define the semantics of CBN λ-calculus with evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

$$E ::= [\cdot] \mid E \; e$$

But the small-step rules are the same:

$$e \rightarrow e'$$

$$\frac{}{E[e] \rightarrow E[e']}$$

$$\frac{}{(\lambda x. \; e) \; e' \rightarrow e\{e'/x\}^\beta}$$
\((\lambda x. x) (\lambda y. y)\) \((\lambda z. z) (\lambda a. a)\)

\(e_0 \rightarrow (\lambda y. y) \left(\left(\lambda z. z\right) (\lambda a. a)\right)\)

\(E = (\lambda y. y) [\cdot]\)
\(e = (\lambda z. z)(\lambda a. a)\)

\(\check{BV}\)

\(E = [\cdot]\)

\(\downarrow CBN\)
\(e =\)

\((\lambda y. y) (\lambda a. a)\)

\((\lambda z. z) (\lambda a. a)\)

\(e_0 \rightarrow e \rightarrow e' = e'_0\)

\(E[e] \rightarrow E[e']\)

\(\text{context}\)
CBN With Evaluation Contexts

We can also define the semantics of CBN λ-calculus with evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

$$E ::= [\cdot] \mid E \, e$$

But the small-step rules are the same:

$$e \rightarrow e'$$

$$\frac{}{E[e] \rightarrow E[e']}$$

$$\frac{}{E[\lambda x. e] \rightarrow E[e[x \mapsto e']]}$$

$$\frac{}{(\lambda x. e) \, e' \rightarrow e[e'[x \mapsto e']]}$$