Lecture 15
De Bruijn, Combinators, Encodings
Review: \(\lambda \)-calculus

Syntax

\[
e \ ::= \ x \mid e_1 \, e_2 \mid \lambda x. \, e \\
\nu \ ::= \ \lambda x. \, e
\]

Semantics

\[
\begin{array}{c}
e_1 \to e_1' \\
\hline
\frac{e_1 \, e_2 \to e_1' \, e_2}{e_1 \, e_2 \to e_1' \, e_2}
\end{array}
\quad
\begin{array}{c}
e \to e' \\
\hline
\frac{\nu \, e \to \nu \, e'}{\nu \, e \to \nu \, e'}
\end{array}
\]

\[
(\lambda x. \, e) \, \nu \to e\{\nu/x\} \quad \beta
\]
Rewind: Currying

This is just a function that returns a function:

\[
\text{ADD} \triangleq \lambda x. \lambda y. x + y
\]

\[
\text{ADD } 38 \rightarrow \lambda y. 38 + y
\]

\[
\text{ADD } 38 \ 4 = (\text{ADD } 38) \ 4 \rightarrow 42
\]

Informally, you can think of it as a *curried* function that takes two arguments, one after the other.

But that’s just a way to get intuition. The \(\lambda\)-calculus only has one-argument functions.
Another way to avoid the tricky issues with substitution is to use a *nameless* representation of terms.

\[e ::= n \mid \lambda . e \mid e \; e \]
de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a *nameless* representation of terms.

\[e ::= n \mid \lambda.e \mid e\ e \]

Abstractions have lost their variables!

Variables are replaced with numerical indices!
Examples

Here are some terms written in standard and de Bruijn notation:

<table>
<thead>
<tr>
<th>Standard</th>
<th>de Bruijn</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda x. x)</td>
<td>(\lambda. 0)</td>
</tr>
<tr>
<td>(\lambda z. z)</td>
<td></td>
</tr>
</tbody>
</table>
Here are some terms written in standard and de Bruijn notation:

<table>
<thead>
<tr>
<th>Standard</th>
<th>de Bruijn</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda x. x)</td>
<td>(\lambda. 0)</td>
</tr>
<tr>
<td>(\lambda z. z)</td>
<td>(\lambda. 0)</td>
</tr>
<tr>
<td>(\lambda x. \lambda y. x)</td>
<td></td>
</tr>
</tbody>
</table>
Examples

Here are some terms written in standard and de Bruijn notation:

<table>
<thead>
<tr>
<th>Standard</th>
<th>de Bruijn</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda x. x)</td>
<td>(\lambda. 0)</td>
</tr>
<tr>
<td>(\lambda z. z)</td>
<td>(\lambda. 0)</td>
</tr>
<tr>
<td>(\lambda x. \lambda y. x)</td>
<td>(\lambda. \lambda. 1)</td>
</tr>
<tr>
<td>(\lambda x. \lambda y. \lambda s. \lambda z. x \ s \ (y \ s \ z))</td>
<td></td>
</tr>
</tbody>
</table>
Examples

Here are some terms written in standard and de Bruijn notation:

<table>
<thead>
<tr>
<th>Standard</th>
<th>de Bruijn</th>
</tr>
</thead>
<tbody>
<tr>
<td>λx. x</td>
<td>λ. 0</td>
</tr>
<tr>
<td>λz. z</td>
<td>λ. 0</td>
</tr>
<tr>
<td>λx. λy. x</td>
<td>λ. λ. 1</td>
</tr>
<tr>
<td>λx. λy. λs. λz. x s (y s z)</td>
<td>λ. λ. λ. λ. 3 1 (2 1 0)</td>
</tr>
<tr>
<td>(λx. x x) (λx. x x)</td>
<td></td>
</tr>
</tbody>
</table>
Here are some terms written in standard and de Bruijn notation:

<table>
<thead>
<tr>
<th>Standard</th>
<th>de Bruijn</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda x.\ x$</td>
<td>$\lambda.\ 0$</td>
</tr>
<tr>
<td>$\lambda z.\ z$</td>
<td>$\lambda.\ 0$</td>
</tr>
<tr>
<td>$\lambda x.\ \lambda y.\ x$</td>
<td>$\lambda.\ \lambda.\ 1$</td>
</tr>
<tr>
<td>$\lambda x.\ \lambda y.\ \lambda s.\ \lambda z.\ x\ s\ (y\ s\ z)$</td>
<td>$\lambda.\ \lambda.\ \lambda.\ 3\ 1\ (2\ 1\ 0)$</td>
</tr>
<tr>
<td>$(\lambda x.\ x\ x)\ (\lambda x.\ x\ x)$</td>
<td>$(\lambda.\ 0\ 0)\ (\lambda.\ 0\ 0)$</td>
</tr>
<tr>
<td>$(\lambda x.\ \lambda x.\ x)\ (\lambda y.\ y)$</td>
<td></td>
</tr>
</tbody>
</table>
Examples

Here are some terms written in standard and de Bruijn notation:

<table>
<thead>
<tr>
<th>Standard</th>
<th>de Bruijn</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda x. x)</td>
<td>(\lambda. 0)</td>
</tr>
<tr>
<td>(\lambda z. z)</td>
<td>(\lambda. 0)</td>
</tr>
<tr>
<td>(\lambda x. \lambda y. x)</td>
<td>(\lambda. \lambda. 1)</td>
</tr>
<tr>
<td>(\lambda x. \lambda y. \lambda s. \lambda z. x s (y s z))</td>
<td>(\lambda. \lambda. \lambda. \lambda. 31(210))</td>
</tr>
<tr>
<td>((\lambda x. x x) (\lambda x. x x))</td>
<td>((\lambda. 00)(\lambda. 00))</td>
</tr>
<tr>
<td>((\lambda x. \lambda x. x) (\lambda y. y))</td>
<td>((\lambda. \lambda. 0)(\lambda. 0))</td>
</tr>
</tbody>
</table>
Free variables

To represent a λ-expression that contains free variables in de Bruijn notation, we need a way to map the free variables to integers.

We will work with respect to a map Γ from variables to integers called a context.

Examples:

Suppose that Γ maps x to 0 and y to 1.

- Representation of xy is 0 1
- Representation of $\lambda z. \ x\ y\ z\ \lambda$. 1 2 0
Shifting

To define substitution, we will need an operation that shifts by i the variables above a cutoff c:

\[
\uparrow^i_c (n) = \begin{cases}
 n & \text{if } n < c \\
 n + i & \text{otherwise}
\end{cases}
\]

\[
\uparrow^i_c (\lambda.e) = \lambda.(\uparrow^i_{c+1} e)
\]

\[
\uparrow^i_c (e_1 e_2) = (\uparrow^i_c e_1) (\uparrow^i_c e_2)
\]

The cutoff c keeps track of the variables that were bound in the original expression and so should not be shifted.

The cutoff is 0 initially.
Substitution

Now we can define substitution:

\[
\begin{align*}
\text{n}\{e/m\} & = \begin{cases}
e & \text{if } n = m \\
n & \text{otherwise} \end{cases} \\
(\lambda e)\{e/m\} & = \lambda(e_1)\{(\uparrow^1 e)/m + 1\} \\
(e_1 e_2)\{e/m\} & = (e_1\{e/m\})(e_2\{e/m\})
\end{align*}
\]
Substitution

Now we can define substitution:

\[
\begin{align*}
\text{n} \{ e / m \} &= \begin{cases}
 e & \text{if } n = m \\
 n & \text{otherwise}
\end{cases} \\
(\lambda e_1) \{ e / m \} &= \lambda e_1 \{(\uparrow^1_0 e) / m + 1\} \\
(e_1 e_2) \{ e / m \} &= (e_1 \{ e / m \}) (e_2 \{ e / m \})
\end{align*}
\]

The \(\beta \) rule for terms in de Bruijn notation is just:

\[
(\lambda e_1) e_2 \rightarrow \uparrow^{-1}_0 (e_1 \{ \uparrow^1_0 e_2 / 0 \})
\]
Example

Consider the term \((\lambda u. \lambda v. u \ x) \ y\) with respect to a context where \(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).
Example

Consider the term \((\lambda u.\lambda v.ux)y\) with respect to a context where \(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).

\[(\lambda.\lambda.1\ 2)\ 1\]
Example

Consider the term \((\lambda u.\lambda v. u \ x) \ y\) with respect to a context where \(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).

\[
\begin{align*}
(\lambda \lambda \cdot 1 2) \ 1 \\
\longrightarrow & \ 0^-1 ((\lambda \cdot 1 2)\{(\uparrow_0^1 1)/0\})
\end{align*}
\]
Example

Consider the term \((\lambda u.\lambda v. u \ x) \ y\) with respect to a context where \(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).

\[
\begin{align*}
(\lambda.\lambda.1\ 2) \ 1 \\
\rightarrow & \quad \uparrow_{0}^{-1} \ (((\lambda.1\ 2)\{\uparrow_{0} 1/0\}) \\
= & \quad \uparrow_{0}^{-1} \ (((\lambda.1\ 2)\{2/0\})
\end{align*}
\]
Example

Consider the term \((\lambda u. \lambda v. u x) y\) with respect to a context where \(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).

\[
(\lambda. \lambda. 1 \ 2) \ 1 \\
\rightarrow \ \uparrow_0^{-1} (((\lambda. 1 \ 2)\{(\uparrow_0^1 1)/0\}) \\
= \ \uparrow_0^{-1} (((\lambda. 1 \ 2)\{2/0\}) \\
= \ \uparrow_0^{-1} \ \lambda.((1 \ 2)\{(\uparrow_0^1 2)/(0 + 1)\}))
\]
Example

Consider the term \((\lambda u. \lambda v. u \ x) \ y\) with respect to a context where
\(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).

\[
(\lambda. \lambda. 1 \ 2) \ 1 \\
\rightarrow \quad \uparrow_{0}^{-1} \ ((\lambda. 1 \ 2)\{(\uparrow_{0}^{1} 1)/0\}) \\
= \quad \uparrow_{0}^{-1} \ ((\lambda. 1 \ 2)\{2/0\}) \\
= \quad \uparrow_{0}^{-1} \ \lambda.((1 \ 2)\{(\uparrow_{0}^{1} 2)/(0 + 1)\}) \\
= \quad \uparrow_{0}^{-1} \ \lambda.((1 \ 2)\{3/1\})
\]
Example

Consider the term \((\lambda u.\lambda v.u \, x) \, y\) with respect to a context where \(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).

\[
\begin{align*}
(\lambda.\lambda.1 \, 2) \, 1 & \\
\rightarrow & \quad \uparrow_{0}^{-1} (((\lambda.1 \, 2)\{\uparrow_{0}^{1} 1/0\})

= \quad \uparrow_{0}^{-1} (((\lambda.1 \, 2)\{2/0\})

= \quad \uparrow_{0}^{-1} \lambda.((1 \, 2)\{\uparrow_{0}^{1} 2/(0 + 1)\})

= \quad \uparrow_{0}^{-1} \lambda.((1 \, 2)\{3/1\})

= \quad \uparrow_{0}^{-1} \lambda.(1\{3/1\}) \, (2\{3/1\})
\end{align*}
\]
Consider the term \((\lambda u. \lambda v. u \ x) \ y\) with respect to a context where \(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).

\[
\begin{align*}
(\lambda. \lambda.1 \ 2) & \ 1 \\
\rightarrow & \ \uparrow_0^{-1} (((\lambda.1 \ 2)\{((\uparrow_0^1 \ 1)/0\}) \\
= & \ \uparrow_0^{-1} (((\lambda.1 \ 2)\{2/0\}) \\
= & \ \uparrow_0^{-1} \lambda.((1 \ 2)\{((\uparrow_0^1 \ 2)/(0 + 1)\}) \\
= & \ \uparrow_0^{-1} \lambda.((1 \ 2)\{3/1\}) \\
= & \ \uparrow_0^{-1} \lambda.(1\{3/1\}) \ (2\{3/1\}) \\
= & \ \uparrow_0^{-1} \lambda.3 \ 2
\end{align*}
\]
Example

Consider the term \((\lambda u.\lambda v.u\ x)\ y\) with respect to a context where \(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).

\[
(\lambda.\lambda.1\ 2)\ 1 \\
\rightarrow \quad \uparrow^{-1}_0 ((\lambda.1\ 2)\{\uparrow^1_0 1/0\}) \\
= \quad \uparrow^{-1}_0 ((\lambda.1\ 2)\{2/0\}) \\
= \quad \uparrow^{-1}_0 \lambda.((1\ 2)\{\uparrow^1_0 2/(0 + 1)\}) \\
= \quad \uparrow^{-1}_0 \lambda.((1\ 2)\{3/1\}) \\
= \quad \uparrow^{-1}_0 \lambda.((1\ 2)\{3/1\}) (2\{3/1\}) \\
= \quad \uparrow^{-1}_0 \lambda.3\ 2 \\
= \quad \lambda.2\ 1
\]
Example

Consider the term \((\lambda u.\lambda v.ux)\ y\) with respect to a context where \(\Gamma(x) = 0\) and \(\Gamma(y) = 1\).

\[
(\lambda.\lambda.1\ 2)\ 1 \\
\rightarrow \uparrow^{-1}_{0} (((\lambda.1\ 2)\{((\uparrow_{0}^{1} 1)/0\})) \\
= \uparrow^{-1}_{0} (((\lambda.1\ 2)\{2/0\})) \\
= \uparrow^{-1}_{0} \lambda.((1\ 2)\{((\uparrow_{0}^{1} 2)/(0 + 1))\}) \\
= \uparrow^{-1}_{0} \lambda.((1\ 2)\{3/1\}) \\
= \uparrow^{-1}_{0} \lambda.(1\{3/1\})\ (2\{3/1\}) \\
= \uparrow^{-1}_{0} \lambda.3\ 2 \\
= \lambda.2\ 1
\]

which, in standard notation (with respect to \(\Gamma\), is the same as \(\lambda v.y\ x\).
Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ-calculus is to work with closed expressions or *combinators*.

With just three combinators, we can encode the entire λ-calculus.
Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ-calculus is to work with closed expressions or combinators.

With just three combinators, we can encode the entire λ-calculus.

\[
\begin{align*}
K &= \lambda x. \lambda y. x \\
S &= \lambda x. \lambda y. \lambda z. x \, z \, (y \, z) \\
l &= \lambda x. x
\end{align*}
\]
Combinators

We can even define independent evaluation rules that don’t depend on the λ-calculus at all.

Behold the “SKI-calculus”:

\[
\begin{align*}
K \ e_1 \ e_2 & \rightarrow e_1 \\
S \ e_1 \ e_2 \ e_3 & \rightarrow e_1 \ e_3 \ (e_2 \ e_3) \\
I \ e & \rightarrow e
\end{align*}
\]

You would never want to program in this language—it doesn’t even have variables!—but it’s exactly as powerful as the λ-calculus.
Bracket Abstraction

The function \([x]\) that takes a combinator term \(M\) and builds another term that behaves like \(\lambda x. M\):

\[
\begin{align*}
[x] \, x & = \, I \\
[x] \, N & = \, K \, N & \text{where } x \not\in \text{fv}(N) \\
[x] \, N_1 \, N_2 & = \, S \, ([x] \, N_1) \, ([x] \, N_2)
\end{align*}
\]

The idea is that \(([x] \, M) \, N \rightarrow M\{N/x\}\) for every term \(N\).
Bracket Abstraction

We then define a function \((e)^*\) that maps a \(\lambda\)-calculus expression to a combinator term:

\[
\begin{align*}
(x)^* &= x \\
(e_1 e_2)^* &= (e_1)^* (e_2)^* \\
(\lambda x. e)^* &= \{x\} (e)^*
\end{align*}
\]

\[
(\bullet)^* : \text{LC} \rightarrow \text{SKI}
\]
As an example, the expression $\lambda x.\lambda y. x$ is translated as follows:

$$(\lambda x.\lambda y. x)^*$$

$$= [x] (\lambda y. x)^*$$

$$= [x] ([y] x)$$

$$= [x] (K x)$$

$$= (S ([x] K) ([x] x))$$

$$= S (K K) I$$

No variables in the final combinator term!
We can check that this behaves the same as our original \(\lambda \)-expression by seeing how it evaluates when applied to arbitrary expressions \(e_1 \) and \(e_2 \).

\[
(\lambda x. \lambda y. x) \ e_1 \ e_2 \\
\rightarrow (\lambda y. \ e_1) \ e_2 \\
\rightarrow \ e_1
\]
Example

We can check that this behaves the same as our original \(\lambda\)-expression by seeing how it evaluates when applied to arbitrary expressions \(e_1\) and \(e_2\).

\[
\begin{align*}
(\lambda x. \lambda y. x) e_1 e_2 & \\
\rightarrow (\lambda y. e_1) e_2 & \\
\rightarrow e_1 & \\
\end{align*}
\]

and

\[
\begin{align*}
(S (K K) I) e_1 e_2 & \\
\rightarrow (K K e_1) (I e_1) e_2 & \\
\rightarrow K e_1 e_2 & \\
\rightarrow e_1 & \\
\end{align*}
\]
Looking back at our definitions...

\[\text{K } e_1 \ e_2 \rightarrow e_1 \]
\[\text{S } e_1 \ e_2 \ e_3 \rightarrow e_1 \ e_3 \ (e_2 \ e_3) \]
\[\text{I } e \rightarrow e \]

...I isn’t strictly necessary. It behaves the same as S K K.
SKI Without I

Looking back at our definitions...

\[\begin{align*}
K & \quad e_1 \ e_2 \rightarrow e_1 \\
S & \quad e_1 \ e_2 \ e_3 \rightarrow e_1 \ e_3 \ (e_2 \ e_3) \\
I & \quad e \rightarrow e
\end{align*} \]

...I isn’t strictly necessary. It behaves the same as S K K.

Our example becomes:

\[S \ (K \ K) \ (S \ K \ K) \]
\iota \triangleq \chi_f \ ((fS) \ K)

I = \ldots

K = \ldots (\ldots)

S = \ldots (\ldots (\ldots))
The pure λ-calculus contains only functions as values. It is not exactly easy to write large or interesting programs in the pure λ-calculus. We can however encode objects, such as booleans, and integers.
Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

\[
\text{AND TRUE FALSE } = \text{ FALSE} \\
\text{NOT FALSE } = \text{ TRUE} \\
\text{IF TRUE } e_1 \ e_2 = e_1 \\
\text{IF FALSE } e_1 \ e_2 = e_2
\]
Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

\[
\begin{align*}
\text{AND TRUE FALSE} &= \text{FALSE} \\
\text{NOT FALSE} &= \text{TRUE} \\
\text{IF TRUE } e_1 e_2 &= e_1 \\
\text{IF FALSE } e_1 e_2 &= e_2
\end{align*}
\]

Let’s start by defining TRUE and FALSE:

\[
\begin{align*}
\text{TRUE} &\triangleq \lambda x. \lambda y. x \\
\text{FALSE} &\triangleq \lambda x. \lambda y. y
\end{align*}
\]
Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

$$\text{AND TRUE FALSE } = \text{ FALSE}$$

$$\text{NOT FALSE } = \text{ TRUE}$$

$$\text{IF TRUE } e_1 \ e_2 = e_1$$

$$\text{IF FALSE } e_1 \ e_2 = e_2$$

Let’s start by defining TRUE and FALSE:

$$\text{TRUE } \equiv \lambda x. \lambda y. x$$

$$\text{FALSE } \equiv \lambda x. \lambda y. y$$
We want the function IF to behave like

\[\lambda b. \lambda t. \lambda f. \text{if } b \text{ is our term TRUE then } t, \text{ otherwise } f \]

\[\text{IF} \equiv \lambda b. \lambda t. \lambda f. \ b \ t \ f \]
Booleans

We want the function IF to behave like

\[\lambda b. \lambda t. \lambda f. \text{if } b \text{ is our term TRUE then } t, \text{ otherwise } f \]

We can rely on the way we defined TRUE and FALSE:

\[\text{IF } \triangleq \lambda b. \lambda t. \lambda f. b \, t \, f \]
Booleans

We want the function IF to behave like

$$\lambda b. \lambda t. \lambda f. \text{if } b \text{ is our term TRUE then } t, \text{ otherwise } f$$

We can rely on the way we defined TRUE and FALSE:

$$\text{IF } \triangleq \lambda b. \lambda t. \lambda f. b \, t \, f$$

We can also write the standard Boolean operators.

$$\text{NOT } \triangleq$$
$$\text{AND } \triangleq$$
$$\text{OR } \triangleq \lambda b_1. \lambda b_2. \text{IF } b_1 \, b_2$$
Booleans

We want the function IF to behave like

\[\lambda b. \lambda t. \lambda f. \text{if } b \text{ is our term TRUE then } t, \text{ otherwise } f \]

We can rely on the way we defined TRUE and FALSE:

\[\text{IF } \triangleq \lambda b. \lambda t. \lambda f. b \ t \ f \]

We can also write the standard Boolean operators.

\[\text{NOT } \triangleq \lambda b. \ b \ \text{FALSE TRUE} \]
\[\text{AND } \triangleq \lambda b_1. \lambda b_2. \ b_1 \ b_2 \ \text{FALSE} \]
\[\text{OR } \triangleq \lambda b_1. \lambda b_2. \ b_1 \ \text{TRUE } b_2 \]
Church Numerals

Let’s encode the natural numbers!

We’ll write \bar{n} for the encoding of the number n. The central function we’ll need is a *successor* operation:

$$\text{SUCC } \bar{n} = \bar{n} + 1$$
Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

\[
\begin{align*}
\overline{0} & \triangleq \lambda f. \lambda x. x \\
\overline{1} & \triangleq \lambda f. \lambda x. f x \\
\overline{2} & \triangleq \lambda f. \lambda x. f (f x)
\end{align*}
\]

\[\text{Succ} \triangleq \lambda n. \lambda F. \lambda x. f(n f x)\]
Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$\bar{0} \triangleq \lambda f. \lambda x. x$

$\bar{1} \triangleq \lambda f. \lambda x. f x$

$\bar{2} \triangleq \lambda f. \lambda x. f (f x)$

We can write a successor function that “inserts” another application of f:

$\text{SUCC} \triangleq \lambda n. \lambda f. \lambda x. f (n f x)$
Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number \(n_1 + n_2 \) is the result of applying the successor function \(n_1 \) times to \(n_2 \).

\[
\text{PLUS} \triangleq \lambda n_1. \lambda n_2. \\
\quad n_1 \cdot (\text{SUCC})(n_2)
\]

\[
\text{MUL} \triangleq \lambda n_1. \lambda n_2. n_1 \cdot (\text{RUS} n_2)
\]
Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number \(n_1 + n_2 \) is the result of applying the successor function \(n_1 \) times to \(n_2 \).

\[
\text{PLUS} \triangleq \lambda n_1. \lambda n_2. n_1 \text{ SUCC } n_2
\]