Lecture 2
Introduction to Semantics
Semantics

Question: What is the meaning of a program?
Semantics

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a compiler, or we could consult a manual...

...but none of these is a satisfactory solution.
Formal Semantics

Three Approaches

• Operational
 ▶ Model program by execution on abstract machine
 ▶ Useful for implementing compilers and interpreters

 $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$

• Denotational:
 ▶ Model program as mathematical objects
 ▶ Useful for theoretical foundations

 $[e]$

• Axiomatic
 ▶ Model program by the logical formulas it obeys
 ▶ Useful for proving program correctness

 $\vdash \{\phi\} e \{\psi\}$
Arithmetic Expressions
Syntax

A language of integer arithmetic expressions with assignment.
Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:

\[x, y, z \in \text{Var} \]
\[n, m \in \text{Int} \]
\[e \in \text{Exp} \]
Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:

\[x, y, z \in \text{Var} \]
\[n, m \in \text{Int} \]
\[e \in \text{Exp} \]

BNF Grammar:

\[e ::= x \]
\[\mid n \]
\[\mid e_1 + e_2 \]
\[\mid e_1 \times e_2 \]
\[\mid x := e_1 ; e_2 \]
Ambiguity

What expression does the string “1 + 2 * 3” describe?
Ambiguity

What expression does the string “1 + 2 * 3” describe?

There are two possible parse trees:
Ambiguity

What expression does the string “1 + 2 * 3” describe?
There are two possible parse trees:

```
+  
1  
*  
2  
3
```

In this course, we will distinguish **abstract syntax** from **concrete syntax**, and focus primarily on abstract syntax (using conventions or parentheses at the concrete level to disambiguate as needed).
Representing Expressions

BNF Grammar:

\[e ::= x \]
\[n \]
\[e_1 + e_2 \]
\[e_1 * e_2 \]
\[x := e_1 ; e_2 \]
Representing Expressions

BNF Grammar:

\[e ::= x \]
\[n \]
\[e_1 + e_2 \]
\[e_1 \times e_2 \]
\[x := e_1 ; e_2 \]

OCaml:

```ocaml
type exp = Var of string
| Int of int
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp
```

Example: Mul(Int 2, Add(Var "foo", Int 1))
Representing Expressions

BNF Grammar:

\[
e ::= x
def n
def e_1 + e_2
def e_1 * e_2
def x := e_1 ; e_2
\]

Java:

```java
abstract class Expr {}
class Var extends Expr { String name; ... }
class Int extends Expr { int val; ... }
class Add extends Expr { Expr exp1, exp2; ... }
class Mul extends Expr { Expr exp1, exp2; ... }
class Assgn extends Expr { String var, Expr exp1, exp2; ... }
```

Example: new Mul(new Int(2), new Add(new Var("foo"), new Int(1)))
Quiz

- $7 + (4 \times 2)$ evaluates to ...?
Quiz

- $7 + (4 \times 2)$ evaluates to 15
Quiz

• $7 + (4 \times 2)$ evaluates to 15
• $i := 6 + 1 ; 2 \times 3 \times i$ evaluates to ...?
Quiz

- $7 + (4 \times 2)$ evaluates to 15
- $i := 6 + 1; 2 \times 3 \times i$ evaluates to 42
Quiz

- $7 + (4 \times 2)$ evaluates to 15
- $i := 6 + 1; 2 \times 3 \times i$ evaluates to 42
- $x + 1$ evaluates to ...?
Quiz

- $7 + (4 \times 2)$ evaluates to 15
- $i := 6 + 1 ; 2 \times 3 \times i$ evaluates to 42
- $x + 1$ evaluates to error?
Quiz

- $7 + (4 \times 2)$ evaluates to 15
- $i := 6 + 1 ; 2 \times 3 \times i$ evaluates to 42
- $x + 1$ evaluates to error?

The rest of this lecture will make these intuitions precise...
Mathematical Preliminaries
Binary Relations

The \textit{product} of two sets A and B, written $A \times B$, contains all ordered pairs (a, b) with $a \in A$ and $b \in B$.
Binary Relations

The \textit{product} of two sets A and B, written $A \times B$, contains all ordered pairs (a, b) with $a \in A$ and $b \in B$.

A \textit{binary relation} on A and B is just a subset $R \subseteq A \times B$.
Binary Relations

The *product* of two sets A and B, written $A \times B$, contains all ordered pairs (a, b) with $a \in A$ and $b \in B$.

A *binary relation* on A and B is just a subset $R \subseteq A \times B$.

Given a binary relation $R \subseteq A \times B$, the set A is called the *domain* of R and B is called the *range* (or *codomain*) of R.
Binary Relations

The *product* of two sets A and B, written $A \times B$, contains all ordered pairs (a, b) with $a \in A$ and $b \in B$.

A *binary relation* on A and B is just a subset $R \subseteq A \times B$.

Given a binary relation $R \subseteq A \times B$, the set A is called the *domain* of R and B is called the *range* (or *codomain*) of R.

Some Important Relations

- empty: \emptyset
- total: $A \times B$
- identity on A: $\{(a, a) \mid a \in A\}$.
- composition $R; S$: $\{(a, c) \mid \exists b. (a, b) \in R \land (b, c) \in S\}$
A *(total) function* f is a binary relation $f \subseteq A \times B$ with the property that every $a \in A$ is related to exactly one $b \in B$.

![Diagram of functions and non-functions](image)
Functions

A *(total)* function f is a binary relation $f \subseteq A \times B$ with the property that every $a \in A$ is related to exactly one $b \in B$.

When f is a function, we usually write $f : A \to B$ instead of $f \subseteq A \times B$.
Functions

A (total) function f is a binary relation $f \subseteq A \times B$ with the property that every $a \in A$ is related to exactly one $b \in B$.

When f is a function, we usually write $f : A \rightarrow B$ instead of $f \subseteq A \times B$.

The image of f is the set of elements $b \in B$ that are mapped to by at least one $a \in A$. Formally:

$$\text{image}(f) \triangleq \{ f(a) \mid a \in A \}$$

$$f(x) = x \times 0$$
Some Important Functions

Given two functions $f : A \rightarrow B$ and $g : B \rightarrow C$, the composition of f and g is defined by: $(g \circ f)(x) \triangleq g(f(x))$

Note order!
Some Important Functions

Given two functions \(f : A \rightarrow B \) and \(g : B \rightarrow C \), the composition of \(f \) and \(g \) is defined by: \((g \circ f)(x) = g(f(x)) \)

Note order!

A partial function \(f : A \rightarrow B \) is a total function \(f : A' \rightarrow B \) on a set \(A' \subseteq A \). The notation \(\text{dom}(f) \) refers to \(A' \).

\[
f \subseteq A' \times B \subseteq A \times B
\]
Some Important Functions

Given two functions $f : A \rightarrow B$ and $g : B \rightarrow C$, the composition of f and g is defined by: $(g \circ f)(x) = g(f(x))$ \hspace{1cm} \text{Note order!}

A partial function $f : A \rightarrow B$ is a total function $f : A' \rightarrow B$ on a set $A' \subseteq A$. The notation $\text{dom}(f)$ refers to A'.

A function $f : A \rightarrow B$ is said to be injective (or one-to-one) if and only if $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$.
Some Important Functions

Given two functions $f : A \rightarrow B$ and $g : B \rightarrow C$, the composition of f and g is defined by: $(g \circ f)(x) = g(f(x))$ \hspace{1cm} \text{Note order!}

A partial function $f : A \rightarrow B$ is a total function $f : A' \rightarrow B$ on a set $A' \subseteq A$. The notation $\text{dom}(f)$ refers to A'.

A function $f : A \rightarrow B$ is said to be \textit{injective} (or \textit{one-to-one}) if and only if $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$.

A function $f : A \rightarrow B$ is said to be \textit{surjective} (or \textit{onto}) if and only if the image of f is B.
Operational Semantics
Overview

An operational semantics describes how a program executes on some abstract (imaginary) machine.
Overview

An operational semantics describes how a program executes on some abstract (imaginary) machine.

A small-step semantics describes how such an execution proceeds from configuration to configuration: \(\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \)
Overview

An operational semantics describes how a program executes on some abstract (imaginary) machine.

A small-step semantics describes how such an execution proceeds from configuration to configuration: \(\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \)

For our language, a configuration \(\langle \sigma, e \rangle \) is a pair of:

- a store \(\sigma \) that records the values of variables,
- and the expression \(e \) being evaluated.
Overview

An operational semantics describes how a program executes on some abstract (imaginary) machine.

A small-step semantics describes how such an execution proceeds from configuration to configuration: \(\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \)

For our language, a configuration \(\langle \sigma, e \rangle \) is a pair of:

- a store \(\sigma \) that records the values of variables,
- and the expression \(e \) being evaluated.

More formally:

\[
\sigma \in \text{Store} \triangleq \text{Var} \rightarrow \text{Int} \\
\text{Config} \triangleq \text{Store} \times \text{Exp}
\]

(A store is a partial function from variables to integers.)
Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e., a subset of \(\text{Config} \times \text{Config} \).
Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e., a subset of $\text{Config} \times \text{Config}$.

Notation: $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$

which means $(\langle \sigma, e \rangle, \langle \sigma', e' \rangle) \in \rightarrow$.

\[
\rightarrow((\langle \sigma, e \rangle)) = \langle \sigma', e' \rangle
\]
Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e., a subset of $\text{Config} \times \text{Config}$.

Notation: $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$
which means $(\langle \sigma, e \rangle, \langle \sigma', e' \rangle) \in \rightarrow$.

Question: How should we define this relation?

$\langle \emptyset, 21 \times 2 \rangle \rightarrow \langle \sigma, 42 \rangle$
Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e., a subset of $\text{Config} \times \text{Config}$.

Notation: $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$

which means $(\langle \sigma, e \rangle, \langle \sigma', e' \rangle) \in \text{“}\rightarrow\text{”}$.

Question: How should we define this relation? Remember that there are an infinite number of configurations and possible steps!
Inference Rules

Answer: Define it inductively, using *inference rules*:

\[
\begin{array}{c}
\text{premise}_1 \quad \text{premise}_2 \quad \cdots \\
\hline
\text{conclusion} \quad \text{NAME}
\end{array}
\]
Inference Rules

Answer: Define it inductively, using inference rules:

\[
\text{premise}_1 \quad \text{premise}_2 \quad \cdots \quad \text{Name} \\
\underline{\quad \text{conclusion}}
\]

An inference rule defines an implication: if all the premises hold, then the conclusion also holds.

Formally, “→” is the smallest relation that is closed under all the inference rules.
Variables

\[n = \sigma(x) \]

\[\langle \sigma, x \rangle \rightarrow \langle \sigma, n \rangle \quad \text{VAR} \]

\[(x, n) \in \sigma \]

\[4 = \langle \{ (y, 4) \} \rangle \quad \text{VAR} \]

\[\langle \{ (y, 4) \} \rangle \quad \rightarrow \quad \langle \ldots, 4 \rangle \quad \text{VAR} \]
Addition

\[p = m + n \]
\[\langle \sigma, n + m \rangle \rightarrow \langle \sigma, p \rangle \]

\[
\begin{align*}
4 + 2 \\
2 + 4 \\
2 + 2
\end{align*}
\]
Addition

\[p = m + n \]
\[\langle \sigma, n + m \rangle \rightarrow \langle \sigma, p \rangle \quad \text{ADD} \]

\[\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e'_1 \rangle \]
\[\langle \sigma, e_1 + e_2 \rangle \rightarrow \langle \sigma', e'_1 + e_2 \rangle \quad \text{LADD} \]
Addition

\[
p = m + n
\]

\[
\langle \sigma, n + m \rangle \rightarrow \langle \sigma, p \rangle
\]

ADD

\[
\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e'_1 \rangle
\]

\[
\langle \sigma, e_1 + e_2 \rangle \rightarrow \langle \sigma', e'_1 + e_2 \rangle
\]

LADD

\[
\langle \sigma, e_2 \rangle \rightarrow \langle \sigma', e'_2 \rangle
\]

\[
\langle \sigma, n + e_2 \rangle \rightarrow \langle \sigma', n + e'_2 \rangle
\]

RADD

\[
\begin{array}{c}
(1 + 1) + (1 + 1) \\
\end{array}
\]

\[
2 + C(1+1)
\]

\[
2 + 2
\]

\[
4
\]
\[
p = m \times n \\
\langle \sigma, m \times n \rangle \rightarrow \langle \sigma, p \rangle
\]
Multiplication

\[p = m \times n \]

\[\langle \sigma, m \times n \rangle \rightarrow \langle \sigma, p \rangle \]

MUL

\[\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e_1 \rangle \]

LMUL

\[\langle \sigma, e_1 \times e_2 \rangle \rightarrow \langle \sigma', e_1' \times e_2 \rangle \]

\[\langle \sigma, e_2 \rangle \rightarrow \langle \sigma', e_2' \rangle \]

RMUL

\[\langle \sigma, n \times e_2 \rangle \rightarrow \langle \sigma', n \times e_2' \rangle \]
Assignment

$$\sigma' = \sigma[x \mapsto n]$$

$$\langle \sigma, x := n ; e_2 \rangle \rightarrow \langle \sigma', e_2 \rangle$$ \text{ASSGN}

Notation: $\sigma[x \mapsto n]$ is a new function that mostly behaves like σ, except that it maps x to n.

$$\langle \{ (y, 10) \}, \ y := 5 ; \ y + 2 \rangle$$

$$\rightarrow \langle \{ (y, 5) \}, \ y + 2 \rangle$$
Assignment

\[
\sigma' = \sigma[x \mapsto n] \\
\langle \sigma, x := n ; e_2 \rangle \rightarrow \langle \sigma', e_2 \rangle
\]

Notation: \(\sigma[x \mapsto n] \) is a *new* function that mostly behaves like \(\sigma \), except that it maps \(x \) to \(n \).

\[
\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e'_1 \rangle \\
\langle \sigma, x := e_1 ; e_2 \rangle \rightarrow \langle \sigma', x := e'_1 ; e_2 \rangle
\]

ASSGN
Operational Semantics

\[
\frac{n = \sigma(x)}{\langle \sigma, x \rangle \rightarrow \langle \sigma, n \rangle} \quad \text{VAR}
\]

\[
\frac{\langle \sigma, e_1 + e_2 \rangle \rightarrow \langle \sigma', e_1' + e_2 \rangle}{\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e_1' \rangle} \quad \text{LADD}
\]

\[
\frac{\langle \sigma, n + e_2 \rangle \rightarrow \langle \sigma', n + e_2' \rangle}{\langle \sigma, e_2 \rangle \rightarrow \langle \sigma', e_2' \rangle} \quad \text{RADD}
\]

\[
\frac{p = m + n}{\langle \sigma, n + m \rangle \rightarrow \langle \sigma, p \rangle} \quad \text{ADD}
\]

\[
\frac{\langle \sigma, e_1 * e_2 \rangle \rightarrow \langle \sigma', e_1' * e_2 \rangle}{\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e_1' \rangle} \quad \text{LMUL}
\]

\[
\frac{\langle \sigma, n * e_2 \rangle \rightarrow \langle \sigma', n * e_2' \rangle}{\langle \sigma, e_2 \rangle \rightarrow \langle \sigma', e_2' \rangle} \quad \text{RMUL}
\]

\[
\frac{p = m \times n}{\langle \sigma, m * n \rangle \rightarrow \langle \sigma, p \rangle} \quad \text{MUL}
\]

\[
\frac{\langle \sigma, x := e_1 ; e_2 \rangle \rightarrow \langle \sigma', x := e_1' ; e_2 \rangle}{\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e_1' \rangle} \quad \text{ASSGN1}
\]

\[
\frac{\sigma' = \sigma[x \mapsto n]}{\langle \sigma, x := n ; e_2 \rangle \rightarrow \langle \sigma', e_2 \rangle} \quad \text{ASSGN}
\]