Lecture 2
Introduction to Semantics
Semantics

Question: What is the meaning of a program?
Semantics

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a compiler, or we could consult a manual...

...but none of these is a satisfactory solution.
Formal Semantics

Three Approaches

• Operational
 ▶ Model program by execution on abstract machine
 ▶ Useful for implementing compilers and interpreters

• Denotational:
 ▶ Model program as mathematical objects
 ▶ Useful for theoretical foundations

• Axiomatic
 ▶ Model program by the logical formulas it obeys
 ▶ Useful for proving program correctness
Arithmetic Expressions
Syntax

A language of integer arithmetic expressions with assignment.
Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:

\[x, y, z \in \text{Var} \]
\[n, m \in \text{Int} \]
\[e \in \text{Exp} \]
Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:

\[
x, y, z \in \text{Var} \\
\]

\[
n, m \in \text{Int} \\
\]

\[
e \in \text{Exp} \\
\]

BNF Grammar:

\[
e ::= x \\
| n \\
| e_1 + e_2 \\
| e_1 * e_2 \\
| x := e_1 ; e_2 \\
\]
Ambiguity

What expression does the string “1 + 2 * 3” describe?
Ambiguity

What expression does the string “1 + 2 * 3” describe?
There are two possible parse trees:

```
+   *
  /   /
1  * 3
  /   /
 2  3
```

```
*   +
  /   /
3  +  2
  /   
 1 2
```
Ambiguity

What expression does the string “1 + 2 * 3” describe?

There are two possible parse trees:

```
+   *
1   2
  * 3
```

```
*   +
*   3
1   2
```

In this course, we will distinguish [abstract syntax](#) from [concrete syntax](#), and focus primarily on abstract syntax (using conventions or parentheses at the concrete level to disambiguate as needed).
Representing Expressions

BNF Grammar:

\[e ::= x \]
\[\quad | \quad n \]
\[\quad | \quad e_1 + e_2 \]
\[\quad | \quad e_1 * e_2 \]
\[\quad | \quad x := e_1 ; e_2 \]
Representing Expressions

BNF Grammar:

\[e ::= x \]
\[\quad n \]
\[\quad e_1 + e_2 \]
\[\quad e_1 \times e_2 \]
\[\quad x := e_1 ; e_2 \]

OCaml:

```ocaml
type exp = Var of string
          | Int of int
          | Add of exp * exp
          | Mul of exp * exp
          | Assgn of string * exp * exp
```

Example: \(\text{Mul}(\text{Int } 2, \text{Add}(\text{Var } "foo", \text{Int } 1)) \)
Representing Expressions

BNF Grammar:

\[e ::= x | n | e_1 + e_2 | e_1 \times e_2 | x := e_1 ; e_2 \]

Java:

```java
abstract class Expr {}
class Var extends Expr { String name; ... }
class Int extends Expr { int val; ... }
class Add extends Expr { Expr exp1, exp2; ... }
class Mul extends Expr { Expr exp1, exp2; ... }
class Assgn extends Expr { String var, Expr exp1, exp2; ... }
```

Example: new Mul(new Int(2), new Add(new Var("foo"), new Int(1)))
Quiz

- $7 + (4 \times 2)$ evaluates to ...?
Quiz

- $7 + (4 \times 2)$ evaluates to 15
Quiz

- $7 + (4 \times 2)$ evaluates to 15
- $i := 6 + 1; 2 \times 3 \times i$ evaluates to ...?
Quiz

- $7 + (4 \times 2)$ evaluates to 15
- $i := 6 + 1 \; ; \; 2 \times 3 \times i$ evaluates to 42
Quiz

- $7 + (4 \times 2)$ evaluates to 15
- $i := 6 + 1 \; ; \; 2 \times 3 \times i$ evaluates to 42
- $x + 1$ evaluates to ...?
Quiz

- \(7 + (4 \times 2)\) evaluates to 15
- \(i := 6 + 1; 2 \times 3 \times i\) evaluates to 42
- \(x + 1\) evaluates to error?
Quiz

- $7 + (4 \times 2)$ evaluates to 15
- $i := 6 + 1 ; 2 \times 3 \times i$ evaluates to 42
- $x + 1$ evaluates to error?

The rest of this lecture will make these intuitions precise...
Mathematical Preliminaries
Binary Relations

The *product* of two sets A and B, written $A \times B$, contains all ordered pairs (a, b) with $a \in A$ and $b \in B$.
Binary Relations

The \textit{product} of two sets A and B, written $A \times B$, contains all ordered pairs (a, b) with $a \in A$ and $b \in B$.

A \textit{binary relation} on A and B is just a subset $R \subseteq A \times B$.
Binary Relations

The *product* of two sets A and B, written $A \times B$, contains all ordered pairs (a, b) with $a \in A$ and $b \in B$.

A *binary relation* on A and B is just a subset $R \subseteq A \times B$.

Given a binary relation $R \subseteq A \times B$, the set A is called the *domain* of R and B is called the *range* (or *codomain*) of R.
Binary Relations

The *product* of two sets A and B, written $A \times B$, contains all ordered pairs (a, b) with $a \in A$ and $b \in B$.

A *binary relation* on A and B is just a subset $R \subseteq A \times B$.

Given a binary relation $R \subseteq A \times B$, the set A is called the *domain* of R and B is called the *range* (or *codomain*) of R.

Some Important Relations

- empty: \emptyset
- total: $A \times B$
- identity on A: $\{(a, a) \mid a \in A\}$.
- composition $R; S$: $\{(a, c) \mid \exists b. (a, b) \in R \land (b, c) \in S\}$
Functions

A (total) function f is a binary relation $f \subseteq A \times B$ with the property that every $a \in A$ is related to exactly one $b \in B$.
Functions

A (total) function f is a binary relation $f \subseteq A \times B$ with the property that every $a \in A$ is related to exactly one $b \in B$.

When f is a function, we usually write $f : A \rightarrow B$ instead of $f \subseteq A \times B$.

11
Functions

A \textit{(total) function} f is a binary relation $f \subseteq A \times B$ with the property that every $a \in A$ is related to exactly one $b \in B$.

When f is a function, we usually write $f : A \rightarrow B$ instead of $f \subseteq A \times B$.

The \textit{image} of f is the set of elements $b \in B$ that are mapped to by at least one $a \in A$. Formally:

\[
\text{image}(f) \triangleq \{ f(a) \mid a \in A \}
\]
Some Important Functions

Given two functions $f : A \rightarrow B$ and $g : B \rightarrow C$, the composition of f and g is defined by:

$$(g \circ f)(x) \triangleq g(f(x))$$

Note order!
Some Important Functions

Given two functions $f : A \to B$ and $g : B \to C$, the composition of f and g is defined by: $(g \circ f)(x) = g(f(x))$ \textbf{Note order!}

A partial function $f : A \rightharpoonup B$ is a total function $f : A' \to B$ on a set $A' \subseteq A$. The notation $\text{dom}(f)$ refers to A'.

$$f \subseteq A' \times B \subseteq A \times B$$
Some Important Functions

Given two functions $f : A \rightarrow B$ and $g : B \rightarrow C$, the composition of f and g is defined by: $(g \circ f)(x) = g(f(x))$ \hspace{1cm} \text{Note order!}$

A partial function $f : A \rightarrow B$ is a total function $f : A' \rightarrow B$ on a set $A' \subseteq A$. The notation $\text{dom}(f)$ refers to A'.

A function $f : A \rightarrow B$ is said to be injective (or one-to-one) if and only if $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$.
Some Important Functions

Given two functions $f : A \rightarrow B$ and $g : B \rightarrow C$, the composition of f and g is defined by: $(g \circ f)(x) = g(f(x))$ \textbf{Note order!}

A partial function $f : A \rightarrow B$ is a total function $f : A' \rightarrow B$ on a set $A' \subseteq A$. The notation $\text{dom}(f)$ refers to A'.

A function $f : A \rightarrow B$ is said to be \textit{injective} (or \textit{one-to-one}) if and only if $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$.

A function $f : A \rightarrow B$ is said to be \textit{surjective} (or \textit{onto}) if and only if the image of f is B.
Operational Semantics
Overview

An operational semantics describes how a program executes on some abstract (imaginary) machine.
Overview

An **operational semantics** describes how a program executes on some abstract (imaginary) machine.

A **small-step** semantics describes how such an execution proceeds from configuration to configuration: \(\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \)
Overview

An operational semantics describes how a program executes on some abstract (imaginary) machine.

A small-step semantics describes how such an execution proceeds from configuration to configuration: $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$

For our language, a configuration $\langle \sigma, e \rangle$ is a pair of:

- a store σ that records the values of variables,
- and the expression e being evaluated.
Overview

An operational semantics describes how a program executes on some abstract (imaginary) machine.

A small-step semantics describes how such an execution proceeds from configuration to configuration: \(\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \)

For our language, a configuration \(\langle \sigma, e \rangle \) is a pair of:
- a store \(\sigma \) that records the values of variables,
- and the expression \(e \) being evaluated.

More formally:

\[
\emptyset \in \text{Store} \triangleq \text{Var} \rightarrow \text{Int} \\
\text{Config} \triangleq \text{Store} \times \text{Exp}
\]

(A store is a partial function from variables to integers.)
The small-step operational semantics itself is a relation on configurations—i.e., a subset of $\text{Config} \times \text{Config}$.
Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e., a subset of $\text{Config} \times \text{Config}$.

Notation: $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$
which means $(\langle \sigma, e \rangle, \langle \sigma', e' \rangle) \in \rightarrow$.
The small-step operational semantics itself is a relation on configurations—i.e., a subset of $\text{Config} \times \text{Config}$.

Notation: $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$
which means $(\langle \sigma, e \rangle, \langle \sigma', e' \rangle) \in \rightarrow$.

Question: How should we define this relation?

$\langle \emptyset, 21 \ast 2 \rangle \rightarrow \langle \sigma, 42 \rangle$
Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e., a subset of $\text{Config} \times \text{Config}$.

Notation: $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$
which means $(\langle \sigma, e \rangle, \langle \sigma', e' \rangle) \in "\rightarrow"$.

Question: How should we define this relation? Remember that there are an infinite number of configurations and possible steps!
Inference Rules

Answer: Define it inductively, using *inference rules*:

\[
\begin{array}{c}
\text{premise}_1 & \text{premise}_2 & \cdots \\
\hline
\text{conclusion} & \text{NAME}
\end{array}
\]
Inference Rules

Answer: Define it inductively, using *inference rules*:

\[
\begin{array}{llll}
\text{premise}_1 & \text{premise}_2 & \cdots \\
\hline
\text{conclusion} & \quad \text{Name} \\
\end{array}
\]

An inference rule defines an implication: if all the *premises* hold, then the *conclusion* also holds.

Formally, “→” is the smallest relation that is closed under all the inference rules.
Variables

$$n = \sigma(x)$$

$$\langle \sigma, x \rangle \rightarrow \langle \sigma, n \rangle$$

VAR
Addition

\[p = m + n \]

\[\langle \sigma, n + m \rangle \rightarrow \langle \sigma, p \rangle \]

ADD
Addition

\[p = m + n \]
\[\langle \sigma, n + m \rangle \rightarrow \langle \sigma, p \rangle \quad \text{ADD} \]

\[\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e_1' \rangle \]
\[\langle \sigma, e_1 + e_2 \rangle \rightarrow \langle \sigma', e_1' + e_2 \rangle \quad \text{LADD} \]
Addition

\[p = m + n \]

\[\langle \sigma, n + m \rangle \rightarrow \langle \sigma, p \rangle \quad \text{ADD} \]

\[\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e'_1 \rangle \quad \text{LADD} \]

\[\langle \sigma, e_1 + e_2 \rangle \rightarrow \langle \sigma', e'_1 + e_2 \rangle \]

\[\langle \sigma, e_2 \rangle \rightarrow \langle \sigma', e'_2 \rangle \quad \text{RADD} \]

\[\langle \sigma, n + e_2 \rangle \rightarrow \langle \sigma', n + e'_2 \rangle \]
Multiplication

\[p = m \times n \]

\[\langle \sigma, m \times n \rangle \rightarrow \langle \sigma, p \rangle \]
Multiplication

\[p = m \times n \]

\[\langle \sigma, m \times n \rangle \rightarrow \langle \sigma, p \rangle \quad \text{MUL} \]

\[\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e'_1 \rangle \]

\[\langle \sigma, e_1 \times e_2 \rangle \rightarrow \langle \sigma', e'_1 \times e_2 \rangle \quad \text{LMUL} \]

\[\langle \sigma, e_2 \rangle \rightarrow \langle \sigma', e'_2 \rangle \]

\[\langle \sigma, n \times e_2 \rangle \rightarrow \langle \sigma', n \times e'_2 \rangle \quad \text{RMUL} \]
Assignment

\[\sigma' = \sigma[x \mapsto n] \]

\[\langle \sigma, x := n ; e_2 \rangle \rightarrow \langle \sigma', e_2 \rangle \]

Notation: \(\sigma[x \mapsto n] \) is a *new* function that mostly behaves like \(\sigma \), except that it maps \(x \) to \(n \).
Assignment

\[\sigma' = \sigma[x \mapsto n] \]

\[\langle \sigma, x := n ; e_2 \rangle \rightarrow \langle \sigma', e_2 \rangle \]

Notation: \(\sigma[x \mapsto n] \) is a *new* function that mostly behaves like \(\sigma \), except that it maps \(x \) to \(n \).

\[\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e'_1 \rangle \]

\[\langle \sigma, x := e_1 ; e_2 \rangle \rightarrow \langle \sigma', x := e'_1 ; e_2 \rangle \]
Operational Semantics

\[
\begin{align*}
\frac{n = \sigma(x)}{\langle \sigma, x \rangle \rightarrow \langle \sigma, n \rangle} & \quad \text{VAR} \\
\frac{\langle \sigma, e_2 \rangle \rightarrow \langle \sigma', e'_2 \rangle}{\langle \sigma, n + e_2 \rangle \rightarrow \langle \sigma', n + e'_2 \rangle} & \quad \text{RADD} \\
\frac{\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e'_1 \rangle}{\langle \sigma, e_1 * e_2 \rangle \rightarrow \langle \sigma', e'_1 * e_2 \rangle} & \quad \text{LMUL} \\
\frac{p = m \times n}{\langle \sigma, m * n \rangle \rightarrow \langle \sigma, p \rangle} & \quad \text{MUL} \\
\frac{\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e'_1 \rangle}{\langle \sigma, x := e_1 ; e_2 \rangle \rightarrow \langle \sigma', x := e'_1 ; e_2 \rangle} & \quad \text{ASSGN1} \\
\frac{\sigma' = \sigma[x \mapsto n]}{\langle \sigma, x := n ; e_2 \rangle \rightarrow \langle \sigma', e_2 \rangle} & \quad \text{ASSGN} \\
\frac{\langle \sigma, e_1 + e_2 \rangle \rightarrow \langle \sigma', e'_1 + e_2 \rangle}{\langle \sigma, e_1 + e_2 \rangle \rightarrow \langle \sigma', e'_1 + e_2 \rangle} & \quad \text{LADD} \\
\frac{p = m + n}{\langle \sigma, n + m \rangle \rightarrow \langle \sigma, p \rangle} & \quad \text{ADD} \\
\frac{\langle \sigma, e_2 \rangle \rightarrow \langle \sigma', e'_2 \rangle}{\langle \sigma, n * e_2 \rangle \rightarrow \langle \sigma', n * e'_2 \rangle} & \quad \text{RMUL}
\end{align*}
\]