Lecture 25
Records and Subtyping
Records

We’ve seen binary products (pairs), and they generalize to \(n \)-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.
We’ve seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

\{foo = 32, bar = true\}

is a record value with an integer field foo and a boolean field bar.
We’ve seen binary products (pairs), and they generalize to \(n \)-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

\[
\{\text{foo} = 32, \text{bar} = \text{true}\}
\]

is a record value with an integer field `foo` and a boolean field `bar`.

Its type is:

\[
\{\text{foo}: \text{int}, \text{bar}: \text{bool}\}
\]
Syntax

\[l \in \mathcal{L} \]

\[e ::= \cdots \mid \{l_1 = e_1, \ldots, l_n = e_n\} \mid e \cdot l \]

\[v ::= \cdots \mid \{l_1 = v_1, \ldots, l_n = v_n\} \]

\[\tau ::= \cdots \mid \{l_1: \tau_1, \ldots, l_n: \tau_n\} \]
Dynamic Semantics

\[E ::= \ldots \]

\[| \{ l_1 = v_1, \ldots, l_{i-1} = v_{i-1}, l_i = E, l_{i+1} = e_{i+1}, \ldots, l_n = e_n \} \]

\[| E.l \]

\[\{ l_1 = v_1, \ldots, l_n = v_n \}.l_i \rightarrow v_i \]
\[\forall i \in 1..n. \quad \Gamma \vdash e_i : \tau_i \]

\[\Gamma \vdash \{l_1 = e_1, \ldots, l_n = e_n\} : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \]

\[\Gamma \vdash e : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \]

\[\Gamma \vdash e.l_i : \tau_i \]
Example

\[
\text{GETX} \triangleq \lambda p : \{x : \text{int}, y : \text{int}\} . p.x
\]
Example

\[
\text{GETX} \triangleq \lambda p : \{x : \text{int}, y : \text{int}\}. p.x
\]

\[
\text{GETX} \{x = 4, y = 2\}
\]
Example

\[
\text{GETX} \triangleq \lambda p : \{x : \texttt{int}, y : \texttt{int}\}. p.x
\]

\[
\text{GETX} \{x = 4, y = 2\}
\]

\[
\text{GETX} \{x = 4, y = 2, z = 42\}
\]
Example

\[
\text{GETX} \triangleq \lambda p: \{ x : \textbf{int}, y : \textbf{int} \}. p.x
\]

\[
\text{GETX} \{ x = 4, y = 2 \}
\]

\[
\text{GETX} \{ x = 4, y = 2, z = 42 \}
\]

\[
\text{GETX} \{ y = 2, x = 4 \}
\]
Subtyping

Definition (Subtype)

\(\tau_1 \) is a *subtype* of \(\tau_2 \), written \(\tau_1 \leq \tau_2 \), if a program can use a value of type \(\tau_1 \) whenever it would use a value of type \(\tau_2 \).

If \(\tau_1 \leq \tau_2 \), we also say \(\tau_2 \) is the *supertype* of \(\tau_1 \).
Subtyping

Definition (Subtype)

\(\tau_1 \) is a subtype of \(\tau_2 \), written \(\tau_1 \leq \tau_2 \), if a program can use a value of type \(\tau_1 \) whenever it would use a value of type \(\tau_2 \).

If \(\tau_1 \leq \tau_2 \), we also say \(\tau_2 \) is the supertype of \(\tau_1 \).

\[\Gamma \vdash e : \tau \quad \tau \leq \tau' \]

\[\Gamma \vdash e : \tau' \] \text{SUBSUMPTION}

This typing rule says that if \(e \) has type \(\tau \) and \(\tau \) is a subtype of \(\tau' \), then \(e \) also has type \(\tau' \).
Record Subtyping

We’ll define a new subtyping relation that works together with the subsumption rule.

\[\tau_1 \leq \tau_2 \]
Record Subtyping

This program isn’t well-typed (yet):

\[(\lambda p : \{ x : \textbf{int} \}. p.x) \{ x = 4, y = 2 \}\]
Record Subtyping

This program isn’t well-typed (yet):

$$(\lambda p : \{x : \text{int}\}. p.x) \{x = 4, y = 2\}$$

So let’s add width subtyping:

$$k \geq 0$$

$$\{l_1 : \tau_1, \ldots, l_{n+k} : \tau_{n+k}\} \leq \{l_1 : \tau_1, \ldots, l_n : \tau_n\}$$
Record Subtyping

This program also doesn’t get stuck:

$$(\lambda p : \{x : \text{int}, y : \text{int}\}. p.x + p.y) \{y = 37, x = 5\}$$
Record Subtyping

This program also doesn’t get stuck:

$$(\lambda p : \{ x : \text{int}, y : \text{int} \}. p.x + p.y) \{ y = 37, x = 5 \}$$

So we can make it well-typed by adding permutation subtyping:

$$\pi$$ is a permutation on 1..n

$$\{l_1 : \tau_1, \ldots, l_n : \tau_n\} \leq \{l_{\pi(1)} : \tau_{\pi(1)}, \ldots, l_{\pi(n)} : \tau_{\pi(n)}\}$$
Record Subtyping

Does this program get stuck? Is it well-typed?

$$\left(\lambda p : \{ x : \{ y : \text{int} \} \}. p.x.y \right) \{ x = \{ y = 4, z = 2 \} \}$$
Record Subtyping

Does this program get stuck? Is it well-typed?

\[(\lambda p : \{ x : \{ y : \text{int} \} \}. p \cdot x \cdot y) \{ x = \{ y = 4, z = 2 \} \}\]

Let’s add depth subtyping:

\[
\forall i \in 1..n. \quad \tau_i \leq \tau'_i
\]

\[
\{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \leq \{ l_1 : \tau'_1, \ldots, l_n : \tau'_n \}
\]
Putting all three forms of record subtyping together:

$$\forall i \in 1..n. \exists j \in 1..m. \quad l'_i = l_j \land \tau_j \leq \tau'_i$$

$$\{l_1:\tau_1, \ldots, l_m:\tau_m\} \leq \{l'_1:\tau'_1, \ldots, l'_n:\tau'_n\}$$

S-RECORD
Standard Subtyping Rules

We always make the subtyping relation both reflexive and transitive.

\[
\frac{T \leq T}{\text{S-REFL}} \quad \frac{T_1 \leq T_2 \quad T_2 \leq T_3}{T_1 \leq T_3} \text{ S-TRANS}
\]

Think of every type describing a set of values. Then \(T_1 \leq T_2 \) when \(T_1 \)’s values are a subset of \(T_2 \)’s.
Top Type

It’s sometimes useful to define a *maximal* type with respect to subtyping:

\[
\tau ::= \cdots \mid \top \\
\tau \leq \top \xrightarrow{\text{S-Top}}
\]

Everything is a subtype of \(\top \), as in Java’s `Object` or Go’s `interface{}`.
Subtype All the Things!

We can also write subtyping rules for sums and products:

\[
\frac{\tau_1 \leq \tau_1' \quad \tau_2 \leq \tau_2'}{\tau_1 + \tau_2 \leq \tau_1' + \tau_2'} \quad \text{S-Sum}
\]
We can also write subtyping rules for sums and products:

\[
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 + \tau_2 \leq \tau'_1 + \tau'_2}\quad \text{S-Sum}
\]

\[
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 \times \tau_2 \leq \tau'_1 \times \tau'_2}\quad \text{S-PRODUCT}
\]
Function Types

How should we decide whether one function type is a subtype of another?

$$
\text{S-FUNCTION}
$$

$$
\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2
$$
Desiderata

We’d like to have:

\[\text{int} \rightarrow \{x: \text{int}, y: \text{int}\} \leq \text{int} \rightarrow \{x: \text{int}\} \]
Desiderata

We’d like to have:

\[
\text{int} \to \{x: \text{int}, y: \text{int}\} \leq \text{int} \to \{x: \text{int}\}
\]

And:

\[
\{x: \text{int}\} \to \text{int} \leq \{x: \text{int}, y: \text{int}\} \to \text{int}
\]
Desiderata

We’d like to have:

\[\text{int} \rightarrow \{x:\text{int}, y:\text{int}\} \leq \text{int} \rightarrow \{x:\text{int}\} \]

And:

\[\{x:\text{int}\} \rightarrow \text{int} \leq \{x:\text{int}, y:\text{int}\} \rightarrow \text{int} \]

In general, to prove:

\[\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2 \]

we’ll require:

- Argument types are **contravariant**: \(\tau'_1 \leq \tau_1 \)
- Return types are **covariant**: \(\tau_2 \leq \tau'_2 \)
Function Subtyping

Putting these two pieces together, we get the subtyping rule for function types:

$$\frac{\tau_1' \leq \tau_1 \quad \tau_2 \leq \tau_2'}{\tau_1 \rightarrow \tau_2 \leq \tau_1' \rightarrow \tau_2'}$$

S-FUNCTION
Reference Subtyping

What should the relationship be between τ and τ' in order to have $\tau \text{ ref} \preceq \tau' \text{ ref}$?
Example

If r' has type $\tau' \text{ ref}$, then $!r'$ has type τ'.

Imagine we replace r' with r, where r has a type $\tau \text{ ref}$ that we’ve somehow decided is a subtype of $\tau' \text{ ref}$.
Example

If \(r' \) has type \(\tau' \textbf{ref} \), then \(!r' \) has type \(\tau' \).

Imagine we replace \(r' \) with \(r \), where \(r \) has a type \(\tau \textbf{ref} \) that we’ve somehow decided is a subtype of \(\tau' \textbf{ref} \).

Then \(!r \) should still produce something can be treated as a \(\tau' \). In other words, it should have a type that is a subtype of \(\tau' \).

So the referent type should be covariant:

\[
\begin{align*}
\tau & \leq \tau' \\
\tau \textbf{ref} & \leq \tau' \textbf{ref}
\end{align*}
\]
Example

If \(v \) has type \(\tau' \), then \(r' := v \) should be legal.

If we replace \(r' \) with \(r \), then it must still be legal to assign \(r := v \).
So \(\text{!r} \) would then produce a value of type \(\tau' \).
Example

If v has type τ', then $r' := v$ should be legal.

If we replace r' with r, then it must still be legal to assign $r := v$. So $!r$ would then produce a value of type τ'.

So the referent type should be contravariant!

\[
\begin{align*}
\tau' \leq \tau \\
\tau \text{ ref} \leq \tau' \text{ ref}
\end{align*}
\]
Reference Subtyping

In fact, subtyping for reference types must be invariant: a reference type \(\tau \text{ ref} \) is a subtype of \(\tau' \text{ ref} \) if and only if \(\tau \leq \tau' \) and \(\tau' \leq \tau \).

\[
\frac{\tau \leq \tau'}{\tau \text{ ref} \leq \tau' \text{ ref}} \quad \text{S-REF}
\]
Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtypeof Animal.

```java
Codethatonlyreadsfromarraystypechecks:
```

```java
Animal
[]
arr = new Cow[]
newCow("Alfonso")

Animal a = arr[0];
```

`butwritingtothearraycangetintotrouble:`

```java
arr[0] = new Animal("Brunhilda");
```

Specifically, this generates an ArrayStoreException.
Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[ ] arr = new Cow[ ] { new Cow(“Alfonso”) };  
Animal a = arr[0];
```
Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[ ] arr = new Cow[ ] { new Cow(“Alfonso”) };
Animal a = arr[0];
```

but writing to the array can get into trouble:

```java
arr[0] = new Animal(“Brunhilda”);
```

Specifically, this generates an ArrayStoreException.