Lecture 16
Programming in the λ-calculus
We can encode TRUE, FALSE, and IF, as:

\[
\text{TRUE} \triangleq \lambda x. \lambda y. x \\
\text{FALSE} \triangleq \lambda x. \lambda y. y \\
\text{IF} \triangleq \lambda b. \lambda t. \lambda f. b \; t \; f
\]

This way, IF behaves how it ought to:

\[
\text{IF TRUE } v_t \; v_f \rightarrow^* \; v_t \\
\text{IF FALSE } v_t \; v_f \rightarrow^* \; v_f
\]
Review: Church Numerals

Church numerals encode a number \(n \) as a function that takes \(f \) and \(x \), and applies \(f \) to \(x \) \(n \) times.

\[
\begin{align*}
\bar{0} & \triangleq \lambda f. \lambda x. x \\
\bar{1} & \triangleq \lambda f. \lambda x. f x \\
\bar{2} & \triangleq \lambda f. \lambda x. f (f x)
\end{align*}
\]

We can define other functions on integers:

\[
\text{SUCC} \triangleq \lambda n. \lambda f. \lambda x. f (n f x)
\]
Review: Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

\[
\begin{align*}
0 \equiv & \lambda f. \lambda x. x \\
1 \equiv & \lambda f. \lambda x. f x \\
2 \equiv & \lambda f. \lambda x. f (f x)
\end{align*}
\]

We can define other functions on integers:

\[
\begin{align*}
\text{SUCC} \equiv & \lambda n. \lambda f. \lambda x. f (n f x) \\
\text{PLUS} \equiv & \lambda n_1. \lambda n_2. n_1 \text{SUCC} n_2
\end{align*}
\]
Review: Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$
\begin{align*}
\bar{0} & \triangleq \lambda f. \lambda x. x \\
\bar{1} & \triangleq \lambda f. \lambda x. f x \\
\bar{2} & \triangleq \lambda f. \lambda x. f (f x)
\end{align*}
$$

We can define other functions on integers:

$$
\begin{align*}
\text{SUCC} & \triangleq \lambda n. \lambda f. \lambda x. f (n f x) \\
\text{PLUS} & \triangleq \lambda n_1. \lambda n_2. n_1 \text{ SUCC} n_2 \\
\text{TIMES} & \triangleq \lambda n_1. \lambda n_2. n_1 (\text{PLUS} n_2) \bar{0}
\end{align*}
$$
Review: Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$
\begin{align*}
0 & \triangleq \lambda f. \lambda x. x \\
1 & \triangleq \lambda f. \lambda x. f x \\
2 & \triangleq \lambda f. \lambda x. f (f x)
\end{align*}
$$

We can define other functions on integers:

$$
\begin{align*}
\text{SUCC} & \triangleq \lambda n. \lambda f. \lambda x. f (n f x) \\
\text{PLUS} & \triangleq \lambda n_1. \lambda n_2. n_1 \text{SUCC} n_2 \\
\text{TIMES} & \triangleq \lambda n_1. \lambda n_2. n_1 (\text{PLUS} n_2) 0 \\
\text{ISZERO} & \triangleq \lambda n. n (\lambda z. \text{FALSE}) \text{ TRUE}
\end{align*}
$$
Recursive Functions

How would we write recursive functions like factorial?
Recursive Functions

How would we write recursive functions like factorial?

We’d like to write it like this...

$$\text{FACT} \triangleq \lambda n. \text{IF} (\text{ISZERO } n) 1 (\text{TIMES } n (\text{FACT} (\text{PRED } n)))$$
Recursive Functions

How would we write recursive functions like factorial?

We’d like to write it like this...

\[\text{FACT} \triangleq \lambda n. \text{IF (ISZERO } n\text{) } 1 \text{ (TIMES } n \text{ (FACT } (\text{PRED } n))) \]

In slightly more readable notation this is...

\[\text{FACT} \triangleq \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{FACT } (n - 1) \]

...but this is an equation, not a definition!
Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive equation on the previous slide.

\[
\text{FACT} \equiv \text{FACT}'
\]

Define a new function FACT' that takes a function f as an argument. Then, for “recursive” calls, it uses \(f \):

\[
\text{FACT}' \equiv f : n \rightarrow \begin{cases}
1 & \text{if } n = 0 \\
 n (f (n - 1)) & \text{else}
\end{cases}
\]

Then define FACT as FACT' applied to itself:

\[
\text{FACT} \equiv \text{FACT}'
\]
Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT’ that takes a function \(f \) as an argument. Then, for “recursive” calls, it uses \(f f \):

\[
\text{FACT'} \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((f f) (n - 1))
\]
We can perform a “trick” to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT’ that takes a function f as an argument. Then, for “recursive” calls, it uses $f f$:

$$\text{FACT'} \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n - 1))$$

Then define FACT as FACT’ applied to itself:

$$\text{FACT} \triangleq \text{FACT'} \text{ FACT'}$$
Example

Let’s try evaluating \(\text{FACT} \) on 3...

\[
\text{FACT} \; 3
\]
Example

Let’s try evaluating FACT on 3...

\[
\text{FACT} \ 3 = (\text{FACT}' \ \text{FACT}') \ 3
\]
Example

Let’s try evaluating FACT on 3...

\[
\text{FACT } 3 = (\text{FACT}' \text{ FACT}') 3
= ((\lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times ((ff) (n - 1))) \text{ FACT}') 3
\]
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= ((λf. λn. if n = 0 then 1 else n × ((f f) (n − 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3

= 3 · (FACT 2 · 1)

= 6
Example

Let’s try evaluating FACT on 3...

\[
\text{FACT } 3 = (\text{FACT’ } \text{FACT’}) 3 \\
= ((\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((ff) (n - 1))) \text{ FACT’}) 3 \\
\rightarrow (\lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((\text{FACT’ } \text{FACT’}) (n - 1))) 3 \\
\rightarrow \text{if } 3 = 0 \text{ then } 1 \text{ else } 3 \times ((\text{FACT’ } \text{FACT’}) (3 - 1))
\]
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= ((λf. λn. if n = 0 then 1 else n × ((ff) (n − 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3
→ if 3 = 0 then 1 else 3 × ((FACT’ FACT’) (3 − 1))
→ 3 × ((FACT’ FACT’) (3 − 1))
Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= (((\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((f f) (n - 1))) \text{ FACT’}) 3
 \rightarrow (\lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((\text{FACT’ FACT’}) (n - 1))) 3
 \rightarrow \text{if } 3 = 0 \text{ then } 1 \text{ else } 3 \times ((\text{FACT’ FACT’}) (3 - 1))
 \rightarrow 3 \times ((\text{FACT’ FACT’}) (3 - 1))
 = 3 \times (\text{FACT} (3 - 1))
Example

Let’s try evaluating FACT on 3...

\[
\text{FACT } 3 = (\text{FACT'} \ \text{FACT'}) \ 3 \\
= ((\lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times ((ff) (n - 1))) \ \text{FACT'}) \ 3 \\
\rightarrow (\lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times ((\text{FACT'} \ \text{FACT'}) (n - 1))) \ 3 \\
\rightarrow \textbf{if } 3 = 0 \textbf{ then } 1 \textbf{ else } 3 \times ((\text{FACT'} \ \text{FACT'}) (3 - 1)) \\
\rightarrow 3 \times ((\text{FACT'} \ \text{FACT'}) (3 - 1)) \\
= 3 \times (\text{FACT} (3 - 1)) \\
\rightarrow \ldots \\
\rightarrow 3 \times 2 \times 1 \times 1
\]
Example

Let’s try evaluating FACT on 3...

\[\text{FACT } 3 = (\text{FACT'} \text{ FACT'}) \ 3 \]
\[= (\lambda f. \lambda n. \text{if } n = 0 \ \text{then } 1 \ \text{else } n \times ((ff)(n-1))) \text{ FACT'} \ 3 \]
\[\rightarrow (\lambda n. \text{if } n = 0 \ \text{then } 1 \ \text{else } n \times ((\text{FACT'} \text{ FACT'}) (n - 1))) \ 3 \]
\[\rightarrow \text{if } 3 = 0 \ \text{then } 1 \ \text{else } 3 \times ((\text{FACT'} \text{ FACT'}) (3 - 1)) \]
\[\rightarrow 3 \times ((\text{FACT'} \text{ FACT'}) (3 - 1)) \]
\[= 3 \times (\text{FACT } (3 - 1)) \]
\[\rightarrow \ldots \]
\[\rightarrow 3 \times 2 \times 1 \times 1 \]
\[\rightarrow * 6 \]
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$.

There is another way: fixed points! Consider factorial again. It is a fixed point of the following:

$$G ≜ f : n : \text{if } n = 0 \text{ then } 1 \text{ else } n (f (n - 1))$$

Recall that if g is a fixed point of G, then $Gg = g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$g 5 = (Gg 5)! 5 (Gg 4)$$

$$= 5 (((Gg 4) \ldots)! 4)$$

$$= \ldots$$
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' \ f'$. There is another way: fixed points!
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$. There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1))$$
Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1))$$

Recall that if g if a fixed point of G, then $G g = g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$g 5 = (G g) 5$$
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then 1 else } n \times (f(n - 1))$$

Recall that if g if a fixed point of G, then $G g = g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$g 5 = (G g) 5$$

$$\rightarrow^* 5 \times (g 4)$$
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function \(f' \) that takes itself as an argument and uses self-application for recursive calls, and then define \(f \) as \(f' \ f' \).

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

\[
G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1))
\]

Recall that if \(g \) if a fixed point of \(G \), then \(G \ g = g \). To see that any fixed point \(g \) is a real factorial function, try evaluating it:

\[
g 5 = (G \ g) 5
\]

\[
\rightarrow^* 5 \times (g 4)
\]

\[
= 5 \times ((G \ g) 4)
\]
Fixed point combinators

How can we generate the fixed point of G?

In denotational semantics, finding fixed points took a lot of math. In the λ-calculus, we just need a suitable combinator...
Y Combinator

The (infamous) Y combinator is defined as

\[Y \triangleq \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

We say that Y is a fixed point combinator because Y f is a fixed point of f (for any lambda term f).
The (infamous) Y combinator is defined as

\[Y \triangleq \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

We say that Y is a fixed point combinator because Y f is a fixed point of f (for any lambda term f).

What happens when we evaluate Y G under CBV?
Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.
Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

\[
Z \triangleq \lambda f. (\lambda x. f (\lambda y. x y)) (\lambda x. f (\lambda y. x y))
\]
Example

Let’s see Z in action, on our function G.

FACT
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z \ G
\]
Example

Let’s see Z in action, on our function G.

\[
\begin{align*}
\text{FACT} & = Z G \\
& = (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G
\end{align*}
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z \, G = (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \, G \\
\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z \; G \\
= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \; G \\
\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \\
\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \; y)
\]
Example

Let’s see \(Z \) in action, on our function \(G \).

\[
\text{FACT} = Z \ G \\
= (\lambda f. (\lambda x. f (\lambda y. x y)) (\lambda x. f (\lambda y. x y))) G \\
\rightarrow (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) \\
\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) y) \\
= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n - 1))) \\
\quad (\lambda y. (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) y)
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z \ G \\
= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G \\
\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \\
\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n - 1))) \\
\quad (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \\
\quad \text{else } n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n - 1))
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z \ G \\
= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G \\
\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \\
\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
= (\lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (f(n - 1))) \\
\hspace{1cm} (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
\rightarrow \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \\
\hspace{1cm} \textbf{else } n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n - 1)) \\
= \beta \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (\lambda y. (Z \ G) y) (n - 1)
\]
Example

Let’s see Z in action, on our function G.

\[
\begin{align*}
{\text{FACT}} & = Z \ G \\
& = (\lambda f. (\lambda x. f (\lambda y. x y)) (\lambda x. f (\lambda y. x y))) \ G \\
& \rightarrow (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) \\
& \rightarrow G (\lambda y. (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) y) \\
& = (\lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (f (n - 1))) \\
& \hspace{1cm} (\lambda y. (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) y) \\
& \rightarrow \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \\
& \hspace{1cm} \textbf{else } n \times ((\lambda y. (\lambda x. G (\lambda y. x y)) (\lambda x. G (\lambda y. x y)) y) (n - 1)) \\
& = \beta \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times ((Z \ G) y) (n - 1) \\
& = \beta \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times ((Z \ G) (n - 1))
\end{align*}
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z \ G \\
= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G \\
\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \\
= (\lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (f(n - 1))) \\
\quad \quad (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
\rightarrow \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \\
\quad \quad \textbf{else } n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n - 1)) \\
\equiv \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times ((Z \ G) (n - 1)) \\
\equiv \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (\text{FACT} (n - 1))
\]
Other fixed point combinators

There are many (indeed infinitely many) fixed-point combinators. Here’s a cute one:

$$Y_k \triangleq (LLLLLLLLLLLLLLLLLLLLLL)$$

where

$$L \triangleq \lambda abcdedfghijklmnopqrstuvwxyzr. (r (this is a fixed point combinator))$$
To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.
To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$\Theta f = f (\Theta f).$$
To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$\Theta f = f (\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f (\Theta f)$$
Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$\Theta f = f (\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f (\Theta f)$$

Now use the recursion removal trick:

$$\Theta' \triangleq \lambda t. \lambda f. f (t t f)$$
$$\Theta \triangleq \Theta' \Theta'$$
Example

$\text{FACT} = \Theta G$
θ Example

\[
\text{FACT} = \Theta G \\
= (((\lambda t. \lambda f. f\,(t\,t\,f))\,(\lambda t. \lambda f. f\,(t\,t\,f)))\,G
\]
\[\text{FACT} = \Theta G \]
\[= ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f))) G \]
\[\rightarrow (\lambda f. f ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) f)) G \]
Example

$\text{FACT} = \Theta G$

$= (((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f))) G$

$\rightarrow (\lambda f. f ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) f)) G$

$\rightarrow G ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) G)$
\(\theta \) Example

\[
\text{FACT} = \Theta G \\
= (\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) G \\
\rightarrow (\lambda f. f ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) f)) G \\
\rightarrow G ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) G) \\
= G (\Theta G)
\]
\[\text{FACT} = \Theta \, G \]

\[
= \left((\lambda t. \lambda f. f (t \, t \, f)) (\lambda t. \lambda f. f (t \, t \, f)) \right) \, G \\
\rightarrow (\lambda f. f \left((\lambda t. \lambda f. f (t \, t \, f)) (\lambda t. \lambda f. f (t \, t \, f)) \, f \right)) \, G \\
\rightarrow G \left((\lambda t. \lambda f. f (t \, t \, f)) (\lambda t. \lambda f. f (t \, t \, f)) \, G \right) \\
= G \left(\Theta \, G \right) \\
= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n - 1))) \, (\Theta \, G) \\
\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((\Theta \, G) \,(n - 1)) \\
= \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT} \,(n - 1)) \]
Here are the syntax and CBV semantics of λ-calculus:

$$
e ::= x \mid \lambda x. e \mid e_1 e_2
\nu ::= \lambda x. e
$$

$$
e_1 \to e'_1 \\ e_1 e_2 \to e'_1 e_2 \\ e \to e'
$$

$$
(\lambda x. e) \nu \to e\{\nu/x\} \beta
$$

There are two kinds of rules: *congruence rules* that specify evaluation order and *computation rules* that specify the “interesting” reductions.
Evaluation contexts let us separate out these two kinds of rules.
Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” in it: a single occurrence of the special symbol $[\cdot]$ in place of a subexpression.

$$E ::= [\cdot] \mid E \, e \mid \nu \, E$$
Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” in it: a single occurrence of the special symbol $[\cdot]$ in place of a subexpression.

$$E ::= [\cdot] \mid E \, e \mid \nu \, E$$

We write $E[e]$ to mean the evaluation context E where the hole has been replaced with the expression e.
Examples

\[
E_1 = [\cdot](\lambda x. x)
\]

\[
E_1[\lambda y. yy] = (\lambda y. yy) \lambda x. x
\]
Examples

\[E_1 = [\cdot] (\lambda x. x) \]
\[E_1[\lambda y. y y] = (\lambda y. y y) \lambda x. x \]

\[E_2 = (\lambda z. z z) [\cdot] \]
\[E_2[\lambda x. \lambda y. x] = (\lambda z. z z) (\lambda x. \lambda y. x) \]
Examples

\[E_1 = [\cdot] (\lambda x. x) \]
\[E_1[\lambda y. yy] = (\lambda y. yy) \lambda x. x \]

\[E_2 = (\lambda z. zz) [\cdot] \]
\[E_2[\lambda x. \lambda y. x] = (\lambda z. zz) (\lambda x. \lambda y. x) \]

\[E_3 = ([\cdot] \lambda x. xx) ((\lambda y. y)(\lambda y. y)) \]
\[E_3[\lambda f. \lambda g. fg] = ((\lambda f. \lambda g. fg) \lambda x. xx) ((\lambda y. y)(\lambda y. y)) \]
With evaluation contexts, we can define the evaluation semantics for the CBV λ-calculus with just two rules: one for evaluation contexts, and one for β-reduction.
With evaluation contexts, we can define the evaluation semantics for the CBV \(\lambda \)-calculus with just two rules: one for evaluation contexts, and one for \(\beta \)-reduction.

With this syntax:

\[
E ::= [\cdot] \mid E \ e \mid v \ E
\]

The small-step rules are:

\[
e \rightarrow e'
\]

\[
\frac{e \rightarrow e'}{E[e] \rightarrow E[e']}
\]

\[
(\lambda x. \ e) \ v \rightarrow e\{v/x\} \ \beta
\]
We can also define the semantics of CBN \(\lambda \)-calculus with evaluation contexts.
We can also define the semantics of CBN λ-calculus with evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

$$E ::= [\cdot] \mid E e$$
CBN With Evaluation Contexts

We can also define the semantics of CBN \(\lambda \)-calculus with evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

\[
E ::= [\cdot] \mid E \, e
\]

But the small-step rules are the same:

\[
e \rightarrow e' \\
\frac{E[e] \rightarrow E[e']}{E[e] \rightarrow E[e']}
\]

\[
(\lambda x. \, e) \, e' \rightarrow e\{e'/x\} \quad \text{\(\beta \)}
\]