Lecture 11
Weakest Preconditions
\{true\}

\begin{align*}
x & := m; \\
y & := 0; \\
\textbf{while} \ (n < x) \ \textbf{do} \ (\\
& \quad \quad \quad x := x - n; \\
& \quad \quad \quad y := y + 1 \\
& \quad \quad \quad) \\
\{ \} & \\
\} \end{align*}

In other words, the program divides \(m \) by \(n \), so \(y \) is the quotient and \(x \) is the remainder.
\{	ext{true}\}

x := m;
y := 0;
\textbf{while } (n < x) \textbf{ do } (
\quad x := x - n;
\quad y := y + 1

\)

\{n \times y + x = m\}

In other words, the program divides \(m\) by \(n\), so \(y\) is the quotient and \(x\) is the remainder.
Generating Preconditions

To fill in a precondition:

\[
\{ _ \} \ c \ \{Q\}
\]

there are many possible preconditions—and some are more useful than others.
Weakest Preconditions

Intuition: The weakest liberal precondition for c and Q is the weakest assertion P such that $\{P\} \ c \ \{Q\}$ is valid.
Weakest Preconditions

Intuition: The weakest liberal precondition for c and Q is the weakest assertion P such that $\{P\} \ c \ \{Q\}$ is valid.

More formally...

Definition (Weakest Liberal Precondition)

P is a weakest liberal precondition of c and Q written $\text{wlp}(c, Q)$ if:

$$\forall \sigma, I. \sigma \models_I P \iff (C[c] \sigma) \text{ undefined} \lor (C[c] \sigma) \models_I Q$$
Weakest Preconditions

\[\text{wlp}(\text{skip}, P) = P \]
Weakest Preconditions

\[
wlp(\textbf{skip}, P) = P
\]
\[
wlp(x := a, P) = P[a/x]
\]
Weakest Preconditions

\[
\begin{align*}
\text{wlp}(\text{skip}, P) & = P \\
\text{wlp}(x := a, P) & = P[a/x] \\
\text{wlp}((c_1; c_2), P) & = \text{wlp}(c_1, \text{wlp}(c_2, P))
\end{align*}
\]
Weakest Preconditions

\[
\begin{align*}
\text{wlp}(\text{skip}, P) & = P \\
\text{wlp}(x := a, P) & = P[a/x] \\
\text{wlp}((c_1; c_2), P) & = \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
\text{wlp}(\text{if } b \text{ then } c_1 \text{ else } c_2, P) & = (b \implies \text{wlp}(c_1, P)) \land \\
& \quad (\neg b \implies \text{wlp}(c_2, P))
\end{align*}
\]
Weakest Preconditions

\[
\begin{align*}
 wlp(\text{skip}, P) &= P \\
 wlp(x := a, P) &= P[a/x] \\
 wlp((c_1; c_2), P) &= wlp(c_1, wlp(c_2, P)) \\
 wlp(\text{if } b \text{ then } c_1 \text{ else } c_2, P) &= (b \implies wlp(c_1, P)) \land (\neg b \implies wlp(c_2, P)) \\
 wlp(\text{while } b \text{ do } c, P) &= \bigwedge_i F_i(P)
\end{align*}
\]
Weakest Preconditions

\[
\begin{align*}
\text{wlp}(\text{skip}, P) &= P \\
\text{wlp}(x := a, P) &= P[a/x] \\
\text{wlp}((c_1; c_2), P) &= \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
\text{wlp}(\text{if } b \text{ then } c_1 \text{ else } c_2, P) &= (b \implies \text{wlp}(c_1, P)) \land (\neg b \implies \text{wlp}(c_2, P)) \\
\text{wlp}(\text{while } b \text{ do } c, P) &= \bigwedge_i F_i(P)
\end{align*}
\]

where

\[
\begin{align*}
F_0(P) &= \text{true} \\
F_{i+1}(P) &= (\neg b \implies P) \land (b \implies \text{wlp}(c, F_i(P)))
\end{align*}
\]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\text{processPacket}(p); \]
\[\textbf{assert} \ P_{\text{safe}} \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\text{processPacket}(p); \]
\[\{ P_{\text{safe}} \} \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\{ P_{\text{filter}}(p) \}; \]
\[\text{processPacket}(p); \]
\[\{ P_{\text{safe}} \} \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[
\begin{align*}
p & := \text{getPacket}(); \\
\textbf{assert } \ P_{\text{filter}}(p); \\
\text{processPacket}(p);
\end{align*}
\]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\textbf{assert } P_{\text{filter}}(p); \]
\[\text{processPacket}(p); \]

\(P_{\text{filter}} \) should be the \textit{weakest} precondition to avoid ruling out legitimate inputs.

Properties of Weakest Preconditions

Lemma (Correctness of Weakest Preconditions)

\[\forall c \in \text{Com}, Q \in \text{Assn}. \]
\[\models \{ \text{wlp}(c, Q) \} \ c \ \{Q\} \ \text{and} \]
\[\forall R \in \text{Assn}. \models \{R\} \ c \ \{Q\} \implies (R \implies \text{wlp}(c, Q)) \]
Properties of Weakest Preconditions

Lemma (Correctness of Weakest Preconditions)

\[\forall c \in \text{Com}, Q \in \text{Assn}. \]
\[\models \{ \text{wlp}(c, Q) \} c \{ Q \} \quad \text{and} \]
\[\forall R \in \text{Assn}. \models \{ R \} c \{ Q \} \implies (R \implies \text{wlp}(c, Q)) \]

Lemma (Provability of Weakest Preconditions)

\[\forall c \in \text{Com}, Q \in \text{Assn}. \vdash \{ \text{wlp}(c, Q) \} c \{ Q \} \]
Soundness and Completeness

Soundness: If we can prove it, then it’s actually true.

Completeness: If it’s true, then a proof exists.
Soundness and Completeness

Soundness: If we can prove it, then it’s actually true.

Definition (Soundness)

If $\vdash \{P\} c \{Q\}$ then $\models \{P\} c \{Q\}$.

Completeness: If it’s true, then a proof exists.

Definition (Completeness)

If $\models \{P\} c \{Q\}$ then $\vdash \{P\} c \{Q\}$.
Relative Completeness

Theorem (Cook (1974))

\[\forall P, Q \in \text{Assn}, c \in \text{Com}. \quad \models \{ P \} c \{ Q \} \text{ implies } \vdash \{ P \} c \{ Q \}. \]
Relative Completeness

Theorem (Cook (1974))

\(\forall P, Q \in \text{Assn}, c \in \text{Com}. \ \models \{P\} c \{Q\} \implies \vdash \{P\} c \{Q\}. \)

Proof Sketch.

Let \(\{P\} c \{Q\} \) be a valid partial correctness specification.

By the first Lemma we have \(\models P \implies wlp(c, Q) \).

By the second Lemma we have \(\vdash \{wlp(c, Q)\} c \{Q\} \).

We conclude \(\vdash \{P\} c \{Q\} \) using the CONSEQUENCE rule.