Lecture 5
IMP Properties
Command Equivalence

Intuitively, two commands are equivalent if they produce the same result under any store...

Definition (Equivalence of commands)

Two commands c and c' are equivalent (written $c \sim c'$) if, for any stores σ and σ', we have

$$\langle \sigma, c \rangle \downarrow \sigma' \iff \langle \sigma, c' \rangle \downarrow \sigma'.$$
For example, we can prove that every `while` command is equivalent to its “unrolling”:

Theorem

For all $b \in \text{Bexp}$ and $c \in \text{Com}$,

$$ \text{while } b \text{ do } c \sim \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip} $$

Proof.

We show each implication separately...
IMP Questions

- Q: Can you write a program that doesn’t terminate?

A: `while true do skip`
Q: Can you write a program that doesn’t terminate?

A: `while true do skip`

Q: Does this mean that IMP is Turing complete?

A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.

Q: What if we replace `Int` with `Int64`?

A: Then we would lose Turing completeness.

Q: How much space do we need to represent configurations during execution of an IMP program?

A: Can calculate a fixed bound!
IMP Questions

• Q: Can you write a program that doesn’t terminate?

 A: `while true do skip`

• Q: Does this mean that IMP is Turing complete?
IMP Questions

- Q: Can you write a program that doesn’t terminate?
 - A: while true do skip

- Q: Does this mean that IMP is Turing complete?
 - A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.
• Q: Can you write a program that doesn’t terminate?
 • A: `while true do skip`

• Q: Does this mean that IMP is Turing complete?
 • A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.

• Q: What if we replace `Int` with `Int64`?
IMP Questions

- Q: Can you write a program that doesn’t terminate?
 - A: ```while true do skip```

- Q: Does this mean that IMP is Turing complete?
 - A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.

- Q: What if we replace `Int` with `Int64`?
 - A: Then we would lose Turing completeness.
IMP Questions

- Q: Can you write a program that doesn’t terminate?
 - A: `while true do skip`

- Q: Does this mean that IMP is Turing complete?
 - A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.

- Q: What if we replace `Int` with `Int64`?
 - A: Then we would lose Turing completeness.

- Q: How much space do we need to represent configurations during execution of an IMP program?
Q: Can you write a program that doesn’t terminate?
A: \texttt{while true do skip}

Q: Does this mean that IMP is Turing complete?
A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.

Q: What if we replace \texttt{Int} with \texttt{Int64}?
A: Then we would lose Turing completeness.

Q: How much space do we need to represent configurations during execution of an IMP program?
A: Can calculate a fixed bound!
Theorem

\[\forall c \in \textbf{Com}, \sigma, \sigma' \sigma'' \in \textbf{Store}. \]

if \(\langle \sigma, c \rangle \downarrow \sigma' \) and \(\langle \sigma, c \rangle \downarrow \sigma'' \) then \(\sigma' = \sigma'' \).
Theorem
\[\forall c \in \text{Com}, \sigma, \sigma', \sigma'' \in \text{Store}. \]
if \(\langle \sigma, c \rangle \downarrow \sigma' \) and \(\langle \sigma, c \rangle \downarrow \sigma'' \) then \(\sigma' = \sigma'' \).

Proof.
By structural induction on \(c \)...

Theorem
\[\forall c \in \text{Com}, \sigma, \sigma' \in \text{Store}. \]
if \(\langle \sigma, c \rangle \downarrow \sigma' \) and \(\langle \sigma, c \rangle \downarrow \sigma'' \) then \(\sigma' = \sigma'' \).

Proof.
By structural induction on \(c \)...

Proof.
By induction on the derivation of \(\langle \sigma, c \rangle \downarrow \sigma' \)...
Derivations

Write $\mathcal{D} \vdash y$ if the conclusion of derivation \mathcal{D} is y.
Derivations

Write $\mathcal{D} \vdash y$ if the conclusion of derivation \mathcal{D} is y.

Example:

Given the derivation,

$\langle \sigma, 6 \rangle \downarrow 6 \quad \langle \sigma, 7 \rangle \downarrow 7$

$\langle \sigma, 6 \times 7 \rangle \downarrow 42$

$\langle \sigma, i := 6 \times 7 \rangle \downarrow \sigma[i \mapsto 42]$

we would write: $\mathcal{D} \vdash \langle \sigma, i := 42 \rangle \downarrow \sigma[i \mapsto 42]$
Induction on Derivations

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!
Induction on Derivations

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

This means we can prove properties by induction on derivations!
Induction on Derivations

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivation \mathcal{D}' is an immediate subderivation of \mathcal{D} if $\mathcal{D}' \vdash z$ where z is one of the premises used of the final rule of derivation \mathcal{D}.
Induction on Derivations

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivation D' is an immediate subderivation of D if $D' \vdash z$ where z is one of the premises used of the final rule of derivation D.

In a proof by induction on derivations, for every inference rule, assume that the property P holds for all immediate subderivations, and show that it holds of the conclusion.
Large-Step Semantics

Skip

\[
\langle \sigma, \text{skip} \rangle \Downarrow \sigma
\]

Assign

\[
\langle \sigma, a \rangle \Downarrow n \\
\langle \sigma, x := a \rangle \Downarrow \sigma[x \mapsto n]
\]

Seq

\[
\langle \sigma, c_1 \rangle \Downarrow \sigma' \\
\langle \sigma', c_2 \rangle \Downarrow \sigma'' \\
\langle \sigma, c_1; c_2 \rangle \Downarrow \sigma''
\]

If-T

\[
\langle \sigma, b \rangle \Downarrow \text{true} \\
\langle \sigma, c_1 \rangle \Downarrow \sigma' \\
\langle \sigma, \text{if } b \text{ then } c_1 \text{ else } c_2 \rangle \Downarrow \sigma'
\]

If-F

\[
\langle \sigma, b \rangle \Downarrow \text{false} \\
\langle \sigma, c_2 \rangle \Downarrow \sigma' \\
\langle \sigma, \text{if } b \text{ then } c_1 \text{ else } c_2 \rangle \Downarrow \sigma'
\]

While-T

\[
\langle \sigma, b \rangle \Downarrow \text{true} \\
\langle \sigma, c \rangle \Downarrow \sigma' \\
\langle \sigma', \text{while } b \text{ do } c \rangle \Downarrow \sigma'' \\
\langle \sigma, \text{while } b \text{ do } c \rangle \Downarrow \sigma''
\]

While-F

\[
\langle \sigma, b \rangle \Downarrow \text{false} \\
\langle \sigma, \text{while } b \text{ do } c \rangle \Downarrow \sigma
\]