CS 4110
Probabilistic Programming
Probabilistic Programming

It's not about writing software.
Probabilistic Programming

Probabilistic programming is a tool for statistical modeling.

OR

A probabilistic programming language is a plain old programming language with `rand(3)` and a suite of fancy analysis tools for understanding its probabilistic behavior.
An Example Model

Cloud of Unknowing

Takes CS 4780
Takes CS 4242
Takes CS 4110

Paper 1 Relevant
Paper 2 Relevant
Paper 3 Relevant

PL+stats
PL
stats
A Model for Humans

Interest in Stats
Takes CS 4780

Takes CS 4242

Interest in PL
Takes CS 4110
A Model for Humans

Interest in Stats → Takes CS 4780
Interest in PL → Takes CS 4110
Busy? → Takes CS 4242
A Model for Humans

- Takes CS 4780
- Takes CS 4242
- Takes CS 4110
- Interest in Stats
- Busy?
- Interest in PL

- Interest in Stats
- Interest in PL
- Paper 1 Relevant
- Paper 2 Relevant
- Paper 3 Relevant
A Model for Humans

\[
\begin{align*}
\Pr[A_{NIPS} | I_{stats} \land B] &= 0.3 \\
\Pr[A_{NIPS} | I_{stats} \land \neg B] &= 0.8 \\
\Pr[A_{NIPS} | \neg I_{stats}] &= 0.1 \\
\ldots \\
\Pr[A_{Dagstuhl} | I_{stats} \land I_{PL}] &= 0.3 \\
\Pr[A_{Dagstuhl} | I_{stats} \land I_{PL} \land \neg B] &= 0.8 \\
\Pr[A_{Dagstuhl} | \neg (I_{stats} \lor I_{PL})] &= 0.1 \\
\ldots \\
R_1 &\sim I_{PL} \land I_{stats} \\
R_2 &\sim I_{PL} \\
R_3 &\sim I_{stats}
\end{align*}
\]
Writing even this tiny model feels like drudgery.

(and we haven’t even gotten to the hard part yet)
• What and Why

• The Basics and Examples

• Applications

• Current Problems
webppl is a small but feature-rich probabilistic programming language embedded in Javascript.

```javascript
// Conference attendance.
var attendance = function(i_pl, i_stats, busy) {
    var attendance = function (interest, busy, weight) {
        if (interest) {
            return busy ? flip(0.3 * weight) : flip(0.8 * weight);
        }
    }
    return attendance;
}
```
Our First Probabilistic Program

```javascript
var b = flip(0.5);

b ? "yes" : "no"
```
var roll = function () {
 var die1 = randomInteger(6) + 1;
 var die2 = randomInteger(6) + 1;
 return die1 + die2;
}

Enumerate(roll)
// Class attendance model.
var attendance = function(i_pl, i_stats, busy) {
 var attendance = function (interest, busy) {
 if (interest) {
 return busy ? flip(0.3) : flip(0.8);
 } else {
 return flip(0.1);
 }
 }
 var a_4110 = attendance(i_pl, busy);
 var a_4780 = attendance(i_stats, busy);
 var a_4242 = attendance(i_pl && i_stats, busy);

 return {cs4110: a_4110, cs4780: a_4780, cs4242: a_4242};
}

// Relevance of our three papers.
var relevance = function(i_pl, i_stats) {
 var rel1 = i_pl && i_stats;
 var rel2 = i_pl;
 var rel3 = i_stats;

 return {paper1: rel1, paper2: rel2, paper3: rel3};
}

// A combined model.
var model = function() {
 // Some even random priors for our "student profile."
 var i_pl = flip(0.5);
 var i_stats = flip(0.5);
 var busy = flip(0.5);

 return [relevance(i_pl, i_stats), attendance(i_pl, i_stats, busy)];
}

var dist = Enumerate(model);
viz.auto(dist);
var roll = function () {
 var die1 = randomInteger(6) + 1;
 var die2 = randomInteger(6) + 1;
 if (!(die1 === 4 || die2 === 4)) {
 factor(-Infinity);
 }
 return die1 + die2;
}

Enumerate(roll)
Conditioning on Observations

// Discard any executions that don’t sum to 10.
var out = die1 + die2;
if (out !== 10) {
 factor(-Infinity);
}

// Return the values on the dice.
return [die1, die2];
// Require my class attendance.

```javascript
var att = attendance(i_pl, i_stats, busy);
require(att.cs4110 && att.cs4242 && !att.cs4780);

return relevance(i_pl, i_stats);
```
Inference Algorithms

Enumerate is the simplest possible *inference* strategy.
• What and Why
• The Basics and Examples
• Applications
• Current Problems
TrueSkill

Measure Transformer Semantics for Bayesian Machine Learning

Johannes Borgström Andrew D. Gordon
Michael Greenberg James Margetson Jurgen Van Gael

// prior distributions, the hypothesis
let skill() = random (Gaussian(10.0,20.0))
let Alice,Bob,Cyd = skill(),skill(),skill()

// observe the evidence
let performance player = random (Gaussian(player,1.0))
observe (performance Alice > performance Bob) //Alice beats Bob
observe (performance Bob > performance Cyd) //Bob beats Cyd
observe (performance Alice > performance Cyd) //Alice beats Cyd

// return the skills
Alice,Bob,Cyd
webppl Vision Demo

```javascript
var newScore = targetImage.distance(finalGeneratedImage) / 1000; // Increase factor(newScore);

if (!showOutputImage) {
    finalGeneratedImage.destroy();
}

counter.push(1);

return lines
}, 2500);

// Show target image for comparison
loadImage(Draw(50, 50, true), "/assets/img/beach.png")
```
Models

Concept Learning

Inducing Arithmetic Functions

Causal Support

Rational Rules

Word Learning as Bayesian Inference

Bayes Net Structure Learning
• What and Why
• The Basics and Examples
• Applications
• Current Research
The R2 Probabilistic Programming Tool is a research project within the Programming Languages and Tools group at Microsoft Research on probabilistic programming. Our goal is to build a user friendly and scalable probabilistic programming system by employing powerful techniques from language design, program analysis and verification.

Details

<table>
<thead>
<tr>
<th>Type</th>
<th>Download</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Name</td>
<td>r2-0.0.1.zip</td>
</tr>
</tbody>
</table>

Note: By installing, copying, or otherwise using this tool, you agree to the terms of the license which accompany it.
R2’s weakest preconditions

```javascript
var die1 = randomInteger(7) + 1;
var die2 = randomInteger(7) + 1;

// Discard any executions that don’t sum to 10.
var out = die1 + die2;
require(out === 10);
```

wasted work!
R2’s weakest preconditions

```javascript
var die1 = randomInteger(7) + 1;
var die2 = randomInteger(7) + 1;

require((die1 == 3 && die2 == 7) || ...);
var out = die1 + die2;
require(out === 10);
```
R2’s weakest preconditions

```javascript
var die1 = randomInteger(7) + 1;
var die2 = randomInteger(7) + 1;

require(
    (die1 == 3 && die2 == 7) || ...);
var out = die1 + die2;
```
Probabilistic assertions: design goals

Work on a messy, mainstream language (C and C++)

Efficiently check statistical properties of the output

We don’t care about conditioning
\texttt{passert} \ e, \ p, \ c

e must hold with probability \(p \)
at confidence \(c \)
float obfuscated(float n) {
 return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
 total = 0.0;
 for (int i = 0; i < COUNT; ++i)
 total += obfuscated(salaries[i]);
 avg = total / len(salaries);
 p_avg = ...;
}

class Bayesian network IR {
 // Implementation details
}

distribution extraction via symbolic execution

statistical optimizations

verification

Bayesian network IR
distribution extraction via symbolic execution

float obfuscated(float n) {
 return n + gaussian(0.0, 1000.0);
}

float average_salary(float* salaries) {
 total = 0.0;
 for (int i = 0; i < COUNT; ++i)
 total += obfuscated(salaries[i]);
 avg = total / len(salaries);
 p_avg = ...;
 passert e, p, c
Distribution extraction: random draws are symbolic

symbolic heap

<table>
<thead>
<tr>
<th>a</th>
<th>4.2</th>
</tr>
</thead>
</table>

\[b = a + \text{gaussian}(0.0, 1.0) \]

<table>
<thead>
<tr>
<th>a</th>
<th>4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>4.2 + \mathcal{G}_{0,1}</td>
</tr>
</tbody>
</table>
input: $a = 4.2$

$\Rightarrow b = \text{gaussian}(0.0, 1.0)$
input: $a = 4.2$

$b = \text{gaussian}(0.0, 1.0)$

c $= a + b$
input: $a = 4.2$

$b = \text{gaussian}(0.0, 1.0)$

$c = a + b$

$d = c + b$
input: $a = 4.2$
$b = \text{gaussian}(0.0, 1.0)$
$c = a + b$
$d = c + b$
input: \(a = 4.2 \)
\(b = \text{gaussian}(0.0, 1.0) \)
\(c = a + b \)
\(d = c + b \)

if \(b > 0.5 \)
\(e = 2.0 \)
else
\(e = 4.0 \)
\textit{input}: a = 4.2 \\
b = \text{gaussian}(0.0, 1.0) \\
c = a + b \\
d = c + b \\
\text{if } b > 0.5 \\
\text{then } e = 2.0 \\
\text{else} \\
e = 4.0 \\
p\text{assert } e \leq 3.0, 0.9, 0.9
float obfuscated(float n) {
 return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
 total = 0.0;
 for (int i = 0; i < COUNT; ++i)
 total += obfuscated(salaries[i]);
 avg = total / len(salaries);
 p_avg = ...;
}

Bayesian network IR

distribution extraction via symbolic execution statistical optimizations verification
X \sim G(\mu_X, \sigma_X^2) \\
Y \sim G(\mu_Y, \sigma_Y^2) \\
Z = X + Y \\
\Rightarrow Z \sim G(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)

\begin{align*}
X &\sim U(a, b) \\
Y &= cX \\
\Rightarrow Y &\sim U(ca, cb)
\end{align*}

statistical property

passer verifier optimization

\begin{align*}
X &\sim U(a, b) \\
Y &\sim X \leq c \\
a &\leq c \leq b \\
\Rightarrow Y &\sim B\left(\frac{c-a}{b-a}\right)
\end{align*}

\begin{align*}
X_1, X_2, \ldots, X_n &\sim D \\
Y &= \sum_i X_i \\
\Rightarrow Y &\sim G(n\mu_D, n\sigma_D^2)
\end{align*}
```c
float obfuscated(float n) {
    return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
    total = 0.0;
    for (int i = 0; i < COUNT; ++i)
        total += obfuscated(salaries[i]);
    avg = total / len(salaries);
    p_avg = ...;
}
```

Bayesian network IR

distribution extraction via symbolic execution

statistical optimizations

verification

passert e, p, c