Lecture 26
Existential Types

2 November 2016
Announcements

- HW #7 due tonight at 11:59pm
- HW #8 out now
- After that, no homework until after Prelim II (and after Thanksgiving)
It’s no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.
Namespaces

It’s no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name collisions.

And components become tightly coupled: any component can use a name defined by any other.
Modularity

A *module* is a collection of named entities that are related.

Modules provide separate namespaces: different modules can use the same names without worrying about collisions.

Modules can:
- Choose which names to export
- Choose which names to keep hidden
- Hide implementation details
Existential Types

In the polymorphic λ-calculus, we introduced *universal* quantification for types.

$$\tau ::= \cdots \mid X \mid \forall X. \tau$$
Existential Types

In the polymorphic λ-calculus, we introduced *universal* quantification for types.

$$\tau ::= \cdots \mid X \mid \forall X. \tau$$

If we have \forall, why not \exists? What would *existential* type quantification do?

$$\tau ::= \cdots \mid X \mid \exists X. \tau$$
Existential Types

Together with records, existential types let us *hide* the implementation details of an interface.
Together with records, existential types let us hide the implementation details of an interface.

\[\exists \text{Counter.} \]

\[
\{ \text{new : Counter,} \\
\text{get : Counter } \rightarrow \text{int,} \\
\text{inc : Counter } \rightarrow \text{Counter} \}
\]
Existential Types

Together with records, existential types let us hide the implementation details of an interface.

$$\exists \text{ Counter.}$$

\{
new : \text{ Counter},
get : \text{ Counter} \rightarrow \text{ int},
inc : \text{ Counter} \rightarrow \text{ Counter}
\}

Here, the witness type might be \text{ int}:

\{
new : \text{ int},
get : \text{ int} \rightarrow \text{ int},
inc : \text{ int} \rightarrow \text{ int}
\}
Existential Types

Let’s extend our STLC with existential types:

\[
\tau ::= \text{int} \\
\quad \mid \tau_1 \to \tau_2 \\
\quad \mid \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \\
\quad \mid \exists X. \tau \\
\quad \mid X
\]
We’ll tag the values of existential types with the witness type.
We’ll tag the values of existential types with the witness type.

A value has type $\exists X. \tau$ is a pair $\{\tau', v\}$
where v has type $\tau\{\tau'/X\}$.
We’ll tag the values of existential types with the witness type.

A value has type $\exists X. \tau$ is a pair $\{\tau', v\}$ where v has type $\tau{\tau'/X}$.

We’ll add new operations to construct and destruct these pairs:

$$\text{pack } \{\tau_1, e\} \text{ as } \exists X. \tau_2$$

$$\text{unpack } \{X, x\} = e_1 \text{ in } e_2$$
Syntax

\[e ::= x \]
| \(\lambda x: \tau. \ e \)
| \(e_1 \ e_2 \)
| \(n \)
| \(e_1 + e_2 \)
| \(\{ \ l_1 = e_1, \ldots, l_n = e_n \ \} \)
| \(e.l \)
| pack \(\{ \tau_1, e \} \) as \(\exists X. \ \tau_2 \)
| unpack \(\{ X, x \} = e_1 \) in \(e_2 \)

\[v ::= n \]
| \(\lambda x: \tau. \ e \)
| \(\{ \ l_1 = v_1, \ldots, l_n = v_n \ \} \)
| pack \(\{ \tau_1, v \} \) as \(\exists X. \ \tau_2 \)
Dynamic Semantics

\[E ::= \ldots \]
\[\quad |\quad \text{pack } \{\tau_1, E\} \text{ as } \exists X. \tau_2 \]
\[\quad |\quad \text{unpack } \{X, x\} = E \text{ in } e \]

\[\text{unpack } \{X, x\} = (\text{pack } \{\tau_1, v\} \text{ as } \exists Y. \tau_2) \text{ in } e \rightarrow e\{v/x\}{\tau_1/X}\]
Static Semantics

\[\Delta, \Gamma \vdash e : \tau_2\{\tau_1/X\} \]

\[\Delta, \Gamma \vdash \text{pack } \{\tau_1, e\} \text{ as } \exists X. \tau_2 : \exists X. \tau_2 \]
\[\Delta, \Gamma \vdash e : \tau_2\{\tau_1/X\}\]

\[\Delta, \Gamma \vdash \text{pack} \{\tau_1, e\} \text{ as } \exists X. \tau_2 : \exists X. \tau_2\]

\[\Delta, \Gamma \vdash e_1 : \exists X. \tau_1 \quad \Delta \cup \{X\}, \Gamma, x : \tau_1 \vdash e_2 : \tau_2 \quad \Delta \vdash \tau_2 \text{ ok}\]

\[\Delta, \Gamma \vdash \text{unpack} \{X, x\} = e_1 \text{ in } e_2 : \tau_2\]

The side condition \(\Delta \vdash \tau_2 \text{ ok}\) ensures that the existentially quantified type variable \(X\) does not appear free in \(\tau_2\).
let counterADT =
pack { int,
 { new = 0,
 get = \(i : \text{int}\). i,
 inc = \(i : \text{int}\). i + 1 } }

as

\(\exists \text{Counter.}\)
{ new : \text{Counter},
 get : \text{Counter} \to \text{int},
 inc : \text{Counter} \to \text{Counter} }

in . . .
Example

Here’s how to use the existential value \textit{counterADT}:

\begin{verbatim}
unpack \{ T, c \} = counterADT in
let y = c.new in
 c.get (c.inc (c.inc y))
\end{verbatim}
We can define alternate, equivalent implementations of our counter...

```
let counterADT =
  pack {{x:int},
    {  new = {x = 0},
      get = \r:{x:int}. r.x, 
      inc = \r:{x:int}. r.x + 1 } }
  as
  ∃Counter.
  {  new : Counter,
      get : Counter → int, 
      inc : Counter → Counter
  } in . . .
```
Existentials and Type Variables

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2 \text{ ok}$ prevents type variables from “leaking out” of unpack expressions.
Existentials and Type Variables

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2 \text{ ok}$ prevents type variables from “leaking out” of unpack expressions.

This rules out programs like this:

```
let m =
    pack {\textbf{int}, \{a = 5, f = \lambda x: \textbf{int}. x + 1\}} as \exists X. \{a : X, f : X \rightarrow X\}
in
unpack \{T, x\} = m in x.fx.a
```

where the type of $x.fx.a$ is just T.
Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.
Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.

\[
\exists X. \tau \triangleq \forall Y. (\forall X. \tau \to Y) \to Y
\]

pack \(\{\tau_1, e\}\) as \(\exists X. \tau_2\) \(\triangleq \Lambda Y. \lambda f : (\forall X. \tau_2 \to Y). f[\tau_1] e\)

unpack \(\{X, x\} = e_1\) in \(e_2\) \(\triangleq e_1[\tau_2] (\Lambda X. \lambda x : \tau_1. e_2)\)

where \(e_1\) has type \(\exists X. \tau_1\) and \(e_2\) has type \(\tau_2\)