Lecture 25
Records and Subtyping

31 October 2016
Announcements

- Homework 6 returned: $\bar{x} = 34$ of 37, $\sigma = 3.8$
- Preliminary Exam II in class on **Wednesday, November 16**
 - New date! Please email me as soon as you can if you have a conflict.
 - Topics: λ-calculus through subtyping (today)
 - Not cumulative (unlike the final)
 - Practice problems available on CMS now
Records

We’ve seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.
Records

We’ve seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

$$\{\text{foo} = 32, \text{bar} = \text{true}\}$$

is a record value with an integer field foo and a boolean field bar.
Records

We’ve seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

```
{foo = 32, bar = true}
```

is a record value with an integer field `foo` and a boolean field `bar`.

Its type is:

```
{foo: int, bar: bool}
```
Syntax

\[l \in \mathcal{L} \]

\[e ::= \cdots | \{l_1 = e_1, \ldots, l_n = e_n\} | e.l \]

\[v ::= \cdots | \{l_1 = v_1, \ldots, l_n = v_n\} \]

\[\tau ::= \cdots | \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \]
Dynamic Semantics

\[E ::= \ldots \]
\[| \{ l_1 = v_1, \ldots, l_{i-1} = v_{i-1}, l_i = E, l_{i+1} = e_{i+1}, \ldots, l_n = e_n \} \]
\[| E.l \]

\[\{ l_1 = v_1, \ldots, l_n = v_n \}.l_i \rightarrow v_i \]
\[\forall i \in 1..n. \quad \Gamma \vdash e_i : \tau_i \]

\[\Gamma \vdash \{ l_1 = e_1, \ldots, l_n = e_n \} : \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \]

\[\Gamma \vdash e : \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \]

\[\Gamma \vdash e. l_i : \tau_i \]
Example

\[
\text{GETX} \triangleq \lambda p: \{x : \textbf{int}, y : \textbf{int}\}. p.x
\]
Example

\[
\text{GETX} \triangleq \lambda p : \{ x : \text{int}, y : \text{int} \} . p.x
\]

\[
\text{GETX} \{ x = 4, y = 2 \}
\]
Example

\[\text{GETX} \triangleq \lambda p : \{ x : \text{int}, y : \text{int} \}. p \cdot x \]

\[\text{GETX} \{ x = 4, y = 2 \} \]

\[\text{GETX} \{ x = 4, y = 2, z = 42 \} \]
Example

$$\text{GETX} \triangleq \lambda p : \{x : \text{int}, y : \text{int}\} . p.x$$

GETX \{x = 4, y = 2\}

GETX \{x = 4, y = 2, z = 42\}

GETX \{y = 2, x = 4\}
Subtyping

Definition (Subtype)

\(\tau_1 \) is a *subtype* of \(\tau_2 \), written \(\tau_1 \leq \tau_2 \), if a program can use a value of type \(\tau_1 \) whenever it would use a value of type \(\tau_2 \).

If \(\tau_1 \leq \tau_2 \), we also say \(\tau_2 \) is the *supertype* of \(\tau_1 \).
Subtyping

Definition (Subtype)

\(\tau_1 \) is a *subtype* of \(\tau_2 \), written \(\tau_1 \leq \tau_2 \), if a program can use a value of type \(\tau_1 \) whenever it would use a value of type \(\tau_2 \).

If \(\tau_1 \leq \tau_2 \), we also say \(\tau_2 \) is the *supertype* of \(\tau_1 \).

\[
\Gamma \vdash e : \tau \quad \tau \leq \tau' \quad \text{Subsumption}
\]

This typing rule says that if \(e \) has type \(\tau \) and \(\tau \) is a subtype of \(\tau' \), then \(e \) also has type \(\tau' \).
We’ll define a new subtyping relation that works together with the subsumption rule.

\[\tau_1 \leq \tau_2 \]
Record Subtyping

This program isn’t well-typed (yet):

\[(\lambda p : \{x : \text{int}\}. p.x) \{x = 4, y = 2\}\]
Record Subtyping

This program isn’t well-typed (yet):

$$(\lambda p : \{ x : \text{int} \}. p.x) \{ x = 4, y = 2 \}$$

So let’s add width subtyping:

$$k \geq 0$$

$$\{ l_1 : \tau_1, \ldots, l_{n+k} : \tau_{n+k} \} \leq \{ l_1 : \tau_1, \ldots, l_n : \tau_n \}$$
This program also doesn’t get stuck:

\[(\lambda p: \{x : \text{int}, y : \text{int}\}. p.x + p.y) \{y = 37, x = 5\} \]
Record Subtyping

This program also doesn’t get stuck:

\[(\lambda p : \{x : \text{int}, y : \text{int}\}. p.x + p.y) \{y = 37, x = 5\}\]

So we can make it well-typed by adding permutation subtyping:

\[\pi \text{ is a permutation on } 1..n\]

\[\{l_1 : \tau_1, \ldots, l_n : \tau_n\} \leq \{l_{\pi(1)} : \tau_{\pi(1)}, \ldots, l_{\pi(n)} : \tau_{\pi(n)}\}\]
Record Subtyping

Does this program get stuck? Is it well-typed?

\[
(\lambda p: \{ x : \{ y : \text{int} \} \}. p.x.y) \{ x = \{ y = 4, z = 2 \} \}
\]
Record Subtyping

Does this program get stuck? Is it well-typed?

\[(\lambda p: \{ x : \{ y : \text{int} \} \}. p.x.y) \{ x = \{ y = 4, z = 2 \} \}\]

Let’s add **depth subtyping**:

\[
\forall i \in 1..n. \quad \tau_i \leq \tau'_i
\]

\[
\{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \leq \{ l_1 : \tau_1, \ldots, l_n : \tau_n \}
\]
Putting all three forms of record subtyping together:

\[
\forall i \in 1..n. \exists j \in 1..m. \quad l'_i = l_j \land \tau_j \leq \tau'_i
\]

\[
\{l_1: \tau_1, \ldots, l_m: \tau_m\} \leq \{l'_1: \tau'_1, \ldots, l'_n: \tau'_n\}
\]

S-RECORD
Standard Subtyping Rules

We always make the subtyping relation both reflexive and transitive.

\[\frac{\tau \leq \tau}{\text{S-REFL}} \]

\[\frac{\tau_1 \leq \tau_2, \tau_2 \leq \tau_3}{\tau_1 \leq \tau_3} \quad \text{S-TRANS} \]

Think of every type describing a set of values. Then \(\tau_1 \leq \tau_2 \) when \(\tau_1 \)'s values are a subset of \(\tau_2 \)'s.
It’s sometimes useful to define a *maximal* type with respect to subtyping:

\[
\tau ::= \cdots \mid \top
\]

\[
\frac{}{\tau \leq \top} \text{S-Top}
\]

Everything is a subtype of \(\top\), as in Java’s `Object` or Go’s `interface`{}.
We can also write subtyping rules for sums and products:

\[
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 + \tau_2 \leq \tau'_1 + \tau'_2} \quad \text{S-Sum}
\]
We can also write subtyping rules for sums and products:

\[
\begin{align*}
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 + \tau_2 \leq \tau'_1 + \tau'_2} & \quad \text{S-Sum} \\
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 \times \tau_2 \leq \tau'_1 \times \tau'_2} & \quad \text{S-Product}
\end{align*}
\]
Function Types

How should we decide whether one function type is a subtype of another?

\[\frac{???}{\tau_1 \to \tau_2 \leq \tau'_1 \to \tau'_2} \quad \text{S-FUNCTION} \]
Desiderata

We’d like to have:

\[\text{int} \rightarrow \{x: \text{int}, y: \text{int}\} \leq \text{int} \rightarrow \{x: \text{int}\}\]
Desiderata

We’d like to have:

\[\text{int} \rightarrow \{ x : \text{int}, y : \text{int} \} \leq \text{int} \rightarrow \{ x : \text{int} \} \]

And:

\[\{ x : \text{int} \} \rightarrow \text{int} \leq \{ x : \text{int}, y : \text{int} \} \rightarrow \text{int} \]
Desiderata

We’d like to have:

\[\text{int} \rightarrow \{ x : \text{int}, y : \text{int} \} \leq \text{int} \rightarrow \{ x : \text{int} \} \]

And:

\[\{ x : \text{int} \} \rightarrow \text{int} \leq \{ x : \text{int}, y : \text{int} \} \rightarrow \text{int} \]

In general, to prove:

\[\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2 \]

we’ll require:

- Argument types are contravariant: \(\tau'_1 \leq \tau_1 \)
- Return types are covariant: \(\tau_2 \leq \tau'_2 \)
Function Subtyping

Putting these two pieces together, we get the subtyping rule for function types:

\[
\frac{\tau'_1 \leq \tau_1 \quad \tau_2 \leq \tau'_2}{\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2} \quad \text{S-FUNCTION}
\]
Reference Subtyping

What should the relationship be between τ and τ' in order to have $\tau \text{ ref} \leq \tau' \text{ ref}$?
Example

If r' has type $\tau' \textbf{ref}$, then $!r'$ has type τ'.

Imagine we replace r' with r, where r has a type $\tau \textbf{ref}$ that we’ve somehow decided is a subtype of $\tau' \textbf{ref}$.
Example

If \(r' \) has type \(\tau' \text{ ref} \), then \(!r' \) has type \(\tau' \).

Imagine we replace \(r' \) with \(r \), where \(r \) has a type \(\tau \text{ ref} \) that we’ve somehow decided is a subtype of \(\tau' \text{ ref} \).

Then \(!r \) should still produce something can be treated as a \(\tau' \). In other words, it should have a type that is a subtype of \(\tau' \).

So the referent type should be covariant:

\[
\frac{\tau \leq \tau'}{\tau \text{ ref} \leq \tau' \text{ ref}}
\]
Example

If v has type τ', then $r' := v'$ should be legal.

If we replace r' with r, then it must still be legal to assign $r := v$. So $!r$ would then produce a value of type τ'.
Example

If \(v \) has type \(\tau' \), then \(r' := v' \) should be legal.

If we replace \(r' \) with \(r \), then it must still be legal to assign \(r := v \).
So \(!r \) would then produce a value of type \(\tau' \).

So the referent type should be contravariant!

\[
\frac{\tau' \leq \tau}{\tau \text{ ref} \leq \tau' \text{ ref}}
\]
Reference Subtyping

In fact, subtyping for reference types must be *invariant*: a reference type τref is a subtype of $\tau' \text{ref}$ if and only if $\tau \leq \tau'$ and $\tau' \leq \tau$.

$$
\frac{\tau \leq \tau' \quad \tau' \leq \tau}{\tau \text{ref} \leq \tau' \text{ref}} \quad \text{S-REF}
$$
Tragically, Java’s mutable arrays use covariant subtyping!

```java
Supposethat Cow is asubtypeof Animal.
Codethat only reads from arraystype checks:
```
```java
Animal arr = new Cow[];
Animal a = arr[0];
```
```
but writing to the array can get into trouble:
```
arr[0] = new Animal("Brunhilda");
```
Specifically, this generates an `ArrayStoreException.`
Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[] arr = new Cow[] { new Cow("Alfonso") };
Animal a = arr[0];
```
Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[] arr = new Cow[] { new Cow(“Alfonso”) };
Animal a = arr[0];
```

but writing to the array can get into trouble:

```java
arr[0] = new Animal(“Brunhilda”);
```

Specifically, this generates an ArrayStoreException.