Lecture 23
Type Inference

26 October 2016
Announcements

- HW #6 due tonight at 11:59pm
 We made one problem easier! Please see Piazza.

- HW #7 out now

- My office hours: Thursday instead of Friday (2–3pm)
Review: Polymorphic λ-Calculus

Syntax

$$e ::= n \mid x \mid \lambda x : \tau. e \mid e_1 \ e_2 \mid \Lambda X. \ e \mid e \ [\tau]$$

$$v ::= n \mid \lambda x : \tau. \ e \mid \Lambda X. \ e$$

Dynamic Semantics

$$E ::= [\cdot] \mid E \ e \mid v \ E \mid E \ [\tau]$$

$$e \rightarrow e'$$

$$\frac{e \rightarrow e'}{E [e] \rightarrow E [e'] }$$

$$\frac{(\lambda x : \tau. \ e) \ v \rightarrow e \{v/x\} }{(\lambda x : \tau. \ e) \ [\tau] \rightarrow e \{\tau/X\} }$$
Review: Polymorphic λ-Calculus

\[\Delta, \Gamma \vdash n : \text{int} \]

\[\Delta, \Gamma, x : \tau \vdash e : \tau' \quad \Delta \vdash \tau \text{ ok} \]
\[\Delta, \Gamma \vdash \lambda x : \tau . e : \tau \to \tau' \]

\[\Delta \cup \{X\}, \Gamma \vdash e : \tau \]
\[\Delta, \Gamma \vdash \forall X . e : \forall X . \tau \]

\[\Gamma(x) = \tau \]
\[\Delta, \Gamma \vdash x : \tau \]

\[\Delta, \Gamma \vdash e_1 : \tau \to \tau' \quad \Delta, \Gamma \vdash e_2 : \tau \]
\[\Delta, \Gamma \vdash e_1 e_2 : \tau' \]

\[\Delta, \Gamma \vdash e : \forall X . \tau' \quad \Delta \vdash \tau \text{ ok} \]
\[\Delta, \Gamma \vdash e [\tau] : \tau' \{\tau / X\} \]
Polymorphism let us write a doubling function that works for any type of function:

\[\text{double} \triangleq \forall X. \lambda f: X \to X. \lambda x: X. f(fx). \]

The type of this expression is:

\[\forall X. (X \to X) \to X \to X \]

You can use the polymorphic function by providing a type:

\[\text{double [int]} \ (\lambda n : \text{int}. \ n + 1 \) \ 7 \]
Type Inference

In languages like OCaml, programmers don’t have to annotate their programs with $\forall X. \tau$ or $e [\tau]$.
In languages like OCaml, programmers don’t have to annotate their programs with $\forall X. \tau$ or $e[\tau]$.

For example, we can write:

```
let double f x = f (f x)
```

and OCaml will figure out that the type is:

$\langle 'a \rightarrow 'a \rangle \rightarrow 'a \rightarrow 'a$

which is equivalent to the same System F type:

$\forall A. (A \rightarrow A) \rightarrow A \rightarrow A$
Type Inference

In languages like OCaml, programmers don’t have to annotate their programs with $\forall X. \tau$ or $e[\tau]$.

We can also write

```
double (fun x → x+1) 7
```

and OCaml will infer that the polymorphic function `double` is instantiated at the type `int`.
ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.

Examples

Prenex:

\[\forall s : ! \]

Not prenex:

\[(\forall s : !) ! \]

int

These restrictions have the following practical ramifications:

- Can’t instantiate type variables with polymorphic types
- Can’t put a polymorphic type on the left of an arrow
ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains \textit{decidable}.

These restrictions, called \textit{prenex polymorphism}, stipulate that \foralls may only appear in the “outermost” position.
However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.

These restrictions, called *prenex polymorphism*, stipulate that \foralls may only appear in the “outermost” position.

Examples

- Prenex: $\forall \alpha. \alpha \rightarrow \alpha$
ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.

These restrictions, called *prenex polymorphism*, stipulate that \foralls may only appear in the “outermost” position.

Examples

- Prenex: $\forall \alpha. \alpha \rightarrow \alpha$
- Not prenex: $(\forall \alpha. \alpha \rightarrow \alpha) \rightarrow \text{int}$
- Not prenex: $(\forall \alpha. \alpha \rightarrow \alpha) \rightarrow \text{int}$
ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains \textit{decidable}.

These restrictions, called \textit{prenex polymorphism}, stipulate that \foralls may only appear in the “outermost” position.

\textbf{Examples}

- Prenex: $\forall \alpha. \alpha \to \alpha$
- Not prenex: $(\forall \alpha. \alpha \to \alpha) \to \text{int}$
- Not prenex: $(\forall \alpha. \alpha \to \alpha) \to \text{int}$

These restrictions have the following practical ramifications:
- Can’t instantiate type variables with polymorphic types
- Can’t put a polymorphic type on the left of an arrow
Example

These restrictions mean that certain terms that are typeable in System F are not typeable in ML!
These restrictions mean that certain terms that are typeable in System F are not typeable in ML!

```ocaml
# fun x -> x x;;
Error: This expression has type 'a -> 'b
but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b
```
Type Inference

Type inference may be undecidable for the polymorphic \(\lambda \)-calculus and OCaml, but it is possible for the simply-typed \(\lambda \)-calculus!
Type Inference

Type inference may be undecidable for the polymorphic λ-calculus and OCaml, but it is possible for the simply-typed λ-calculus!

Type inference for the STLC means guessing a τ in every abstraction in an untyped version:

$$\lambda x. e$$

to produce a typed program:

$$\lambda x: \tau. e$$

that we can use in the typing rule for functions.
Example

Here’s an untyped program:

\[\lambda a. \lambda b. \lambda c. \text{if } a (b + 1) \text{ then } b \text{ else } c \]
Example

Here’s an untyped program:

$$\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \ \text{then } b \ \text{else } c$$

Informal inference:
Example

Here’s an untyped program:

\[\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \ \text{then } b \ \text{else } c \]

Informal inference:

- \(b \) must be \textbf{int}
Example

Here’s an untyped program:
\[\lambda a. \lambda b. \lambda c. \text{if } a (b + 1) \text{ then } b \text{ else } c \]

Informal inference:

- \(b\) must be \textbf{int}
- \(a\) must be some kind of function
Example

Here’s an untyped program:

\[\lambda a. \lambda b. \lambda c. \text{if } a (b + 1) \text{ then } b \text{ else } c \]

Informal inference:

- \(b \) must be \textbf{int}
- \(a \) must be some kind of function
- the argument type of \(a \) must be the same as \(b + 1 \)
Here’s an untyped program:
\[
\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \text{ then } b \text{ else } c
\]

Informal inference:
- \(b \) must be \textbf{int}
- \(a \) must be some kind of function
- the argument type of \(a \) must be the same as \(b + 1 \)
- the result type of \(a \) must be \textbf{bool}
Example

Here’s an untyped program:

\[\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \ \text{then } b \ \text{else } c \]

Informal inference:

- \(b \) must be \textbf{int}
- \(a \) must be some kind of function
- the argument type of \(a \) must be the same as \(b + 1 \)
- the result type of \(a \) must be \textbf{bool}
- the type of \(c \) must be the same as \(b \)
Example

Here’s an untyped program:

\[\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \ \text{then } b \ \text{else } c \]

Informal inference:

- \(b \) must be \textbf{int}
- \(a \) must be some kind of function
- the argument type of \(a \) must be the same as \(b + 1 \)
- the result type of \(a \) must be \textbf{bool}
- the type of \(c \) must be the same as \(b \)

Putting all these pieces together:

\[\lambda a : \textbf{int} \rightarrow \textbf{bool}. \ \lambda b : \textbf{int}. \ \lambda c : \textbf{int}. \ \text{if } a \ (b + 1) \ \text{then } b \ \text{else } c \]
Let’s automate type inference!
Let’s automate type inference!

We introduce a new judgment:

\[\Gamma \vdash e : \tau \mid C \]

Given a typing context \(\Gamma \) and an expression \(e \), it generates a set of *constraints*—equations between types.
Let’s automate type inference!

We introduce a new judgment:
\[\Gamma \vdash e : \tau \mid C \]

Given a typing context Γ and an expression e, it generates a set of constraints—equations between types.

If these constraints are solvable, then e can be well-typed in Γ.

A solution to a set of constraints is a type substitution σ that, for each equation, makes both sides syntactically equal.
Let’s define the type inference judgment for this STLC language:

\[
e ::= x \mid \lambda x : \tau. e \mid e_1 e_2 \mid n \mid e_1 + e_2
\]

\[
\tau ::= \text{int} \mid X \mid \tau_1 \to \tau_2
\]

You can use a type variable \(X\) wherever you want to have a type inferred.
Constraint-Based Typing Judgment

\[\frac{\chi : \tau \in \Gamma}{\Gamma \vdash \chi : \tau \mid \emptyset} \text{ CT-VAR} \]
Constraint-Based Typing Judgment

\[
\frac{\chi : \tau \in \Gamma}{\Gamma \vdash \chi : \tau | \emptyset} \quad \text{CT-VAR} \\
\frac{\Gamma \vdash n : \text{int} | \emptyset}{\Gamma \vdash n : \text{int} | \emptyset} \quad \text{CT-INT}
\]
Constraint-Based Typing Judgment

\[
\begin{align*}
\frac{\chi : \tau \in \Gamma}{\Gamma \vdash \chi : \tau \mid \emptyset} & \quad \text{CT-VAR} \\
\frac{\Gamma \vdash n : \text{int} \mid \emptyset}{\Gamma \vdash n : \text{int} \mid \emptyset} & \quad \text{CT-INT} \\
\frac{\Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2}{\Gamma \vdash e_1 + e_2 : \text{int} \mid C_1 \cup C_2 \cup \{\tau_1 = \text{int}, \tau_2 = \text{int}\}} & \quad \text{CT-ADD}
\end{align*}
\]
Constraint-Based Typing Judgment

\[
\frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau | \emptyset} \quad \text{CT-VAR} \quad \frac{n : \text{int} \vdash | \emptyset}{\Gamma} \quad \text{CT-INT}
\]

\[
\frac{\Gamma \vdash e_1 : \tau_1 | C_1 \quad \Gamma \vdash e_2 : \tau_2 | C_2}{\Gamma \vdash e_1 + e_2 : \text{int} | C_1 \cup C_2 \cup \{\tau_1 = \text{int}, \tau_2 = \text{int}\}} \quad \text{CT-ADD}
\]

\[
\frac{\Gamma, x : \tau_1 \vdash e : \tau_2 | C}{\Gamma \vdash \lambda x : \tau_1. e : \tau_1 \rightarrow \tau_2 | C} \quad \text{CT-ABS}
\]
Constraint-Based Typing Judgment

\[\frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau \mid \emptyset} \quad \text{CT-VAR} \]

\[\frac{\Gamma \vdash n : \text{int} \mid \emptyset}{\Gamma \vdash n : \text{int} \mid \emptyset} \quad \text{CT-INT} \]

\[\frac{\Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2}{\Gamma \vdash e_1 + e_2 : \text{int} \mid C_1 \cup C_2 \cup \{\tau_1 = \text{int}, \tau_2 = \text{int}\}} \quad \text{CT-ADD} \]

\[\frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \mid C}{\Gamma \vdash \lambda x : \tau_1. e : \tau_1 \rightarrow \tau_2 \mid C} \quad \text{CT-ABS} \]

\[\frac{\Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2 \quad X \text{ fresh} \quad C' = C_1 \cup C_2 \cup \{\tau_1 = \tau_2 \rightarrow X\}}{\Gamma \vdash e_1 e_2 : X \mid C'} \quad \text{CT-APP} \]
Solving Constraints

A *type substitution* is a finite map from type variables to types.

Example: The substitution

\[X \mapsto \text{int}, Y \mapsto \text{int} \to \text{int}\]

maps type variable X to \text{int} and Y to \text{int} \to \text{int}.
Type Substitution

We can define substitution of type variables formally:

\[(X) = \begin{cases}
X & \text{if } X \neq 2 \\
\text{if } X \text{ not in domain of } (\text{int}) & \text{int}(!') \end{cases}\]

We don't need to worry about avoiding variable capture: all type variables are "free."

Given two substitutions \(\sigma_1\) and \(\sigma_2\), we write \(\sigma_1 \circ \sigma_2\) for their composition:

\[(\sigma_1 \circ \sigma_2)(X) = \sigma_1(\sigma_2(X))\]
We can define substitution of type variables formally:

\[\sigma(X) = \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases} \]
We can define substitution of type variables formally:

\[
\sigma(X) = \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases}
\]

\[
\sigma(\text{int}) = \text{int}
\]
Type Substitution

We can define substitution of type variables formally:

\[
\sigma(X) = \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases}
\]

\[
\sigma(\text{int}) = \text{int}
\]

\[
\sigma(\tau \rightarrow \tau') = \sigma(\tau) \rightarrow \sigma(\tau')
\]
We can define substitution of type variables formally:

\[
\sigma(X) = \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases}
\]

\[
\sigma(\text{int}) = \text{int}
\]

\[
\sigma(\tau \rightarrow \tau') = \sigma(\tau) \rightarrow \sigma(\tau')
\]

We don’t need to worry about avoiding variable capture: all type variables are “free.”
Type Substitution

We can define substitution of type variables formally:

\[
\sigma(X) = \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases}
\]

\[
\sigma(\text{int}) = \text{int}
\]

\[
\sigma(\tau \to \tau') = \sigma(\tau) \to \sigma(\tau')
\]

We don’t need to worry about avoiding variable capture: all type variables are “free.”

Given two substitutions \(\sigma_1\) and \(\sigma_2\), we write \(\sigma_1 \circ \sigma_2\) for their composition: \((\sigma_1 \circ \sigma_2)(\tau) = \sigma_1(\sigma_2(\tau))\).
Unification

Our constraints are of the form $\tau = \tau'$.
Unification

Our constraints are of the form $\tau = \tau′$.

We say that a substitution σ unifies constraint $\tau = \tau′$ if $\sigma(\tau) = \sigma(\tau′)$.

We say that substitution σ satisfies (or unifies) set of constraints C if σ unifies every constraint in C.
Unification

If:
- $\Gamma \vdash e : \tau \mid C$, and
- σ satisfies C,
then e has type τ' under Γ, where $\sigma(\tau) = \tau'$.

If there are no substitutions that satisfy C, then e is not typeable.
Unification

If:

- $\Gamma \vdash e : \tau \mid C$, and
- σ satisfies C,

then e has type τ' under Γ, where $\sigma(\tau) = \tau'$.

If there are no substitutions that satisfy C, then e is not typeable.

So let’s find a substitution σ that unifies a set of constraints C!
Unification Algorithm

\[\text{unify}(\emptyset) = [] \]

\[\text{unify}(f = g[C]) = \begin{cases} \text{unify}(C[C]) & \text{if } f = g' \text{ and } f \text{ and } g' \text{ not free variables} \\ \text{unify}(C[f = Xg] \circ [X]) & \text{if } f = g' \text{ and } f \text{ and } g' \text{ not free variables} \\ \text{unify}(C[f = Xg] \circ [X]) & \text{if } f = o_1 \text{ and } g = o_1 \text{ and } f \text{ and } g \text{ not free variables} \\ \text{fail} & \text{otherwise} \end{cases} \]
Unification Algorithm

\[\text{unify}(\emptyset) = [] \quad \text{(the empty substitution)} \]
Unification Algorithm

\[
\text{unify}(\emptyset) = [] \quad (\text{the empty substitution})
\]

\[
\text{unify}(\{ \tau = \tau' \} \cup C') =
\]
\begin{enumerate}
\item \text{if } \tau = \tau' \text{ then}
\quad \text{unify}(C')
\end{enumerate}
Unification Algorithm

\[\text{unify}(\emptyset) = [] \] (the empty substitution)

\[\text{unify}(\{\tau = \tau'\} \cup C') = \]
if \(\tau = \tau' \) then
 \[\text{unify}(C') \]
else if \(\tau = X \) and \(X \) not a free variable of \(\tau' \) then
 \[\text{unify}(C\{\tau'/X\}) \circ [X \mapsto \tau'] \]
Unification Algorithm

\[
\text{unify}(\emptyset) = [] \quad \text{(the empty substitution)}
\]

\[
\text{unify}(\{\tau = \tau'\} \cup C') =
\]

if \(\tau = \tau'\) then

\[
\text{unify}(C')
\]

else if \(\tau = X\) and \(X\) not a free variable of \(\tau'\) then

\[
\text{unify}(C'\{\tau'/X\}) \circ [X \mapsto \tau']
\]

else if \(\tau' = X\) and \(X\) not a free variable of \(\tau\) then

\[
\text{unify}(C'\{\tau/X\}) \circ [X \mapsto \tau]
\]
Unification Algorithm

\[\text{unify}(\emptyset) = [] \quad \text{(the empty substitution)}\]

\[\text{unify} \left(\{ \tau = \tau' \} \cup C' \right) =\]

if \(\tau = \tau' \) then
 \[\text{unify}(C')\]
else if \(\tau = X \) and \(X \) not a free variable of \(\tau' \) then
 \[\text{unify}(C'\{\tau'/X\}) \circ [X \mapsto \tau']\]
else if \(\tau' = X \) and \(X \) not a free variable of \(\tau \) then
 \[\text{unify}(C'\{\tau/X\}) \circ [X \mapsto \tau]\]
else if \(\tau = \tau_o \rightarrow \tau_1 \) and \(\tau' = \tau'_o \rightarrow \tau'_1 \) then
 \[\text{unify}(C' \cup \{ \tau_0 = \tau'_0, \tau_1 = \tau'_1 \})\]
Unification Algorithm

\[\text{unify}(\emptyset) = [] \] (the empty substitution)

\[\text{unify}(\{\tau = \tau'\} \cup C') = \]

if \(\tau = \tau' \) then
 \[\text{unify}(C') \]

else if \(\tau = X \) and \(X \) not a free variable of \(\tau' \) then
 \[\text{unify}(C'\{\tau'/X\}) \circ [X \mapsto \tau'] \]

else if \(\tau' = X \) and \(X \) not a free variable of \(\tau \) then
 \[\text{unify}(C'\{\tau/X\}) \circ [X \mapsto \tau] \]

else if \(\tau = \tau_0 \rightarrow \tau_1 \) and \(\tau' = \tau'_0 \rightarrow \tau'_1 \) then
 \[\text{unify}(C' \cup \{\tau_0 = \tau'_0, \tau_1 = \tau'_1\}) \]

else
 \[\text{fail} \]
Unification Properties

The unification algorithm always terminates.
Unification Properties

The unification algorithm always terminates.

The solution, if it exists, is the most general solution: if \(\sigma = \text{unify}(C) \) and \(\sigma' \) is a solution to \(C \), then there is some \(\sigma'' \) such that \(\sigma' = (\sigma'' \circ \sigma) \).