Lecture 25
Records and Subtyping

31 October 2016
Announcements

- Homework 6 returned: $\bar{x} = 34$ of 37, $\sigma = 3.8$
- Preliminary Exam II in class on **Wednesday, November 16**
 - New date! Please email me as soon as you can if you have a conflict.
 - Topics: λ-calculus through subtyping (today)
 - Not cumulative (unlike the final)
 - Practice problems available on CMS now
Records

We’ve seen binary products (pairs), and they generalize to \(n \)-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.
Records

We’ve seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

\[
\{\text{foo} = 32, \text{bar} = \text{true}\}
\]

is a record value with an integer field foo and a boolean field bar.
Records

We’ve seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

\[
\{\text{foo} = 32, \text{bar} = \text{true}\}
\]

is a record value with an integer field foo and a boolean field bar.

Its type is:

\[
\{\text{foo} : \text{int}, \text{bar} : \text{bool}\}
\]
Syntax

\(l \in \mathcal{L} \)

\(e ::= \cdots | \{l_1 = e_1, \ldots, l_n = e_n\} \mid e.l \)

\(\nu ::= \cdots | \{l_1 = \nu_1, \ldots, l_n = \nu_n\} \)

\(\tau ::= \cdots | \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \)
Dynamic Semantics

\[E ::= \ldots \]

\[| \{ l_1 = v_1, \ldots, l_{i-1} = v_{i-1}, l_i = E, l_{i+1} = e_{i+1}, \ldots, l_n = e_n \} \]

\[| E.l \]

\[\{ l_1 = v_1, \ldots, l_n = v_n \}.l_i \rightarrow v_i \]

\[\{ \text{lat} = 5, \ \text{long} = 7 \} \]
∀i ∈ 1..n. Γ ⊢ e_i : τ_i
Γ ⊢ \{l_1 = e_1, \ldots, l_n = e_n\} : \{l_1 : \tau_1, \ldots, l_n : \tau_n\}

Γ ⊢ e : \{l_1 : \tau_1, \ldots, l_n : \tau_n\}
Γ ⊢ e.l_i : \tau_i
Example

\[\text{GETX} \triangleq \lambda p : \{ x : \text{int}, y : \text{int} \}. p.x \]

\[\zeta \in \text{GETX} \{ x = 5, y = 7 \} \]

\[\rightarrow^* \subseteq \]

\[\{ x = 5, y = 7 \} \]
Example

\[\text{GETX} \triangleq \lambda p: \{ x : \text{int}, y : \text{int} \}. p.x \]

\[\text{GETX} \{ x = 4, y = 2 \} \]
Example

$$\text{GETX} \triangleq \lambda p : \{ x : \text{int}, y : \text{int} \}. p.x$$

$$\text{GETX} \{ x = 4, y = 2 \}$$

$$\text{GETX} \{ x = 4, y = 2, z = 42 \}$$
Example

\[
\text{GETX} \triangleq \lambda p : \{ x : \text{int}, y : \text{int} \}. p.x
\]

\[
\text{GETX} \{ x = 4, y = 2 \}
\]

\[
\text{GETX} \{ x = 4, y = 2, z = 42 \}
\]

\[
\text{GETX} \{ y = 2, x = 4 \}
\]
Definition (Subtype)

\(\tau_1 \) is a *subtype* of \(\tau_2 \), written \(\tau_1 \leq \tau_2 \), if a program can use a value of type \(\tau_1 \) whenever it would use a value of type \(\tau_2 \).

If \(\tau_1 \leq \tau_2 \), we also say \(\tau_2 \) is the *supertype* of \(\tau_1 \).
Subtyping

Definition (Subtype)

τ_1 is a *subtype* of τ_2, written $\tau_1 \leq \tau_2$, if a program can use a value of type τ_1 whenever it would use a value of type τ_2.

If $\tau_1 \leq \tau_2$, we also say τ_2 is the *supertype* of τ_1.

$$
\Gamma \vdash e : \tau \quad \tau \leq \tau' \\
\frac{}{\Gamma \vdash e : \tau'} \quad \text{SUBSUMPTION}
$$

This typing rule says that if e has type τ and τ is a subtype of τ', then e also has type τ'.
Record Subtyping

We’ll define a new subtyping relation that works together with the subsumption rule.

\[\tau_1 \leq \tau_2 \]
Record Subtyping

This program isn’t well-typed (yet):

\[(\lambda p : \{x : \text{int}\}. p.x) \{x = 4, y = 2\}\]
Record Subtyping

This program isn’t well-typed (yet):

\[(\lambda p : \{x : \text{int}\}. p.x) \{x = 4, y = 2\}\]

So let’s add width subtyping:

\[
k \geq 0
\]

\[
\{l_1 : \tau_1, \ldots, l_{n+k} : \tau_{n+k}\} \leq \{l_1 : \tau_1, \ldots, l_n : \tau_n\}
\]

\[
\{y : \text{int}, y : \text{int}\} \leq \{x : \text{int}\}
\]

\[
\Gamma + \{x = 4, y = 2\} : \{x : \text{int}\}\]

\[
\text{SUB.}
\]
Record Subtyping

This program also doesn’t get stuck:

$$(\lambda p : \{x : \text{int}, y : \text{int}\}. \ p.x + p.y) \ {y = 37, x = 5}$$
Record Subtyping

This program also doesn’t get stuck:

$$(\lambda p : \{ x : \text{int}, y : \text{int} \}. p.x + p.y) \{ y = 37, x = 5 \}$$

So we can make it well-typed by adding permutation subtyping:

$$\pi \text{ is a permutation on } 1..n$$

$$\{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \leq \{ l_{\pi(1)} : \tau_{\pi(1)}, \ldots, l_{\pi(n)} : \tau_{\pi(n)} \}$$

$$(\{ x : \text{int}, y : \text{int} \} \leq y \times x \leq x \leq y)$$
Record Subtyping

Does this program get stuck? Is it well-typed?

\[(\lambda p : \{ x : \{ y : \text{int} \} \}. p.x.y) \{ x = \{ y = 4, z = 2 \} \}\]
Record Subtyping

Does this program get stuck? Is it well-typed?

$$(\lambda p : \{ x : \{ y : \texttt{int} \} \} . p \cdot x \cdot y) \{ x = \{ y = 4, z = 2 \} \}$$

Let’s add depth subtyping:

$$\forall i \in 1..n. \quad \tau_i \leq \tau_i'$$

$$\{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \leq \{ l_1 : \tau_1', \ldots, l_n : \tau_n' \}$$

$$\{ x = \{ x = 5 \} \}$$
Record Subtyping

Putting all three forms of record subtyping together:

\[
\forall i \in 1..n. \exists j \in 1..m. \quad l'_i = l_j \land \tau_j \leq \tau'_i \quad \rightarrow \quad \{l_1 : \tau_1, \ldots, l_m : \tau_m\} \leq \{l'_1 : \tau'_1, \ldots, l'_n : \tau'_n\} \quad \text{S-RECORD}
\]
Standard Subtyping Rules

We always make the subtyping relation both reflexive and transitive.

\[
\frac{\tau \leq \tau}{\text{S-REFL}} \quad \frac{\tau_1 \leq \tau_2 \quad \tau_2 \leq \tau_3}{\tau_1 \leq \tau_3} \quad \text{S-TRANS}
\]

Think of every type describing a set of values. Then \(\tau_1 \leq \tau_2 \) when \(\tau_1 \)'s values are a subset of \(\tau_2 \)'s.
Top Type

It’s sometimes useful to define a maximal type with respect to subtyping:

\[
\tau ::= \cdots \mid \top
\]

\[
\frac{\tau \leq \top}{\text{S-Top}}
\]

Everything is a subtype of \(\top \), as in Java’s `Object` or Go’s `interface{}`.
Subtype All the Things!

We can also write subtyping rules for sums and products:

\[
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 + \tau_2 \leq \tau'_1 + \tau'_2} \quad \text{S-Sum}
\]
Subtype All the Things!

We can also write subtyping rules for sums and products:

\[
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 + \tau_2 \leq \tau'_1 + \tau'_2} \quad \text{S-Sum}
\]

\[
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 \times \tau_2 \leq \tau'_1 \times \tau'_2} \quad \text{S-PRODUCT}
\]
Function Types

How should we decide whether one function type is a subtype of another?

\[
\begin{align*}
\tau_1 &\leq \tau_1', \\
\tau_2 &\leq \tau_2'
\end{align*}
\]

\[
\frac{\tau_1 \rightarrow \tau_2 \leq \tau_1' \rightarrow \tau_2'}{\tau_1 \rightarrow \tau_2' \leq \tau_1' \rightarrow \tau_2'} \quad \text{S-FUNCTION}
\]
We’d like to have:

\[
\text{int} \to \{x: \text{int}, y: \text{int}\} \leq \text{int} \to \{x: \text{int}\}
\]
Desiderata

We’d like to have:

\[\text{int} \rightarrow \{x: \text{int}, y: \text{int}\} \leq \text{int} \rightarrow \{x: \text{int}\} \]

And:

\[\{x: \text{int}\} \rightarrow \text{int} \leq \{x: \text{int}, y: \text{int}\} \rightarrow \text{int} \]

\[f \; \#\; p = p \cdot x \]

\[f \; \{x = 5, \; y = 7\} \]
Desiderata

We’d like to have:

\[\text{int} \rightarrow \{ x : \text{int}, y : \text{int} \} \leq \text{int} \rightarrow \{ x : \text{int} \} \]

And:

\[\{ x : \text{int} \} \rightarrow \text{int} \leq \{ x : \text{int}, y : \text{int} \} \rightarrow \text{int} \]

In general, to prove:

\[\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2 \]

we’ll require:

- Argument types are **contravariant**: \(\tau'_1 \leq \tau_1 \)
- Return types are **covariant**: \(\tau_2 \leq \tau'_2 \)
Putting these two pieces together, we get the subtyping rule for function types:

\[
\frac{\tau_1' \leq \tau_1 \quad \tau_2 \leq \tau_2'}{\tau_1 \rightarrow \tau_2 \leq \tau_1' \rightarrow \tau_2'} \quad \text{S-FUNCTION}
\]
What should the relationship be between τ and τ' in order to have $\tau \text{ ref} \leq \tau' \text{ ref}$?

\[
\text{ref} \subseteq \text{int ref}
\]

\[
\Upsilon \leq \Upsilon'
\]

\[
\Upsilon' \leq \Upsilon
\]
Example

If r' has type τ' ref, then $!r'$ has type τ'.

Imagine we replace r' with r, where r has a type τ ref that we’ve somehow decided is a subtype of τ' ref.
Example

If \(r' \) has type \(\tau' \text{ ref} \), then \(!r' \) has type \(\tau' \).

Imagine we replace \(r' \) with \(r \), where \(r \) has a type \(\tau \text{ ref} \) that we’ve somehow decided is a subtype of \(\tau' \text{ ref} \).

Then \(!r \) should still produce something can be treated as a \(\tau' \). In other words, it should have a type that is a subtype of \(\tau' \).

So the referent type should be covariant:

\[
\tau \leq \tau' \\
\tau \text{ ref} \leq \tau' \text{ ref}
\]
Example

If \(v \) has type \(\tau' \), then \(r' := v' \) should be legal.

If we replace \(r' \) with \(r \), then it must still be legal to assign \(r := v \).
So \(!r \) would then produce a value of type \(\tau' \).
Example

If \(v \) has type \(\tau' \), then \(r' := v' \) should be legal.

If we replace \(r' \) with \(r \), then it must still be legal to assign \(r := v \).
So \(\text{!}r \) would then produce a value of type \(\tau' \).

So the referent type should be contravariant!

\[
\frac{\tau' \leq \tau}{\tau \text{ ref} \leq \tau' \text{ ref}}
\]
Reference Subtyping

In fact, subtyping for reference types must be invariant: a reference type $\tau \text{ ref}$ is a subtype of $\tau' \text{ ref}$ if and only if $\tau \leq \tau'$ and $\tau' \leq \tau$.

$$\frac{\tau \leq \tau' \quad \tau' \leq \tau}{\tau \text{ ref} \leq \tau' \text{ ref}} \quad \text{S-REF}$$
Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!
Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[ ] arr = new Cow[ ] { new Cow(“Alfonso”) };
Animal a = arr[0];
```
Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[] arr = new Cow[] { new Cow("Alfonso") };
Animal a = arr[0];
```

but writing to the array can get into trouble:

```java
arr[0] = new Animal("Brunhilda");
```

Specifically, this generates an ArrayStoreException.