Announcements

• Tomorrow: *Reading Code as if it Mattered* Yaron Minsky PhD ’02
 2pm in Gate 310

 Abstract: This talk describes the design of a new system for managing the
 process of developing, reviewing and releasing software, called Iron. Iron
 runs on top of a traditional DVCS, in our case Mercurial, and is responsible
 for managing a patch-oriented review process on top of that DVCS that
 precisely tracks what people have read and need to read. Notably, Iron
 makes it easy to deal with merges, including conflicted merges. In addition,
 Iron provides a hierarchical relationship between different features that
 allows handling of multiple release processes within the same codebase,
 and also manage more complex workflows like handling concurrent
 review of features where one feature depends on the other.

• HW 7 due tomorrow

• HW 8 out today
Type Abstraction

We’ve now seen several examples of type abstraction:

- Simple types
- Polymorphism
- Subtyping

These types enforce a discipline over the code untyped code that, in many situations, provides useful abstractions for programmers.

Today we’ll look at another type system feature, existential types, that provides a way to abstract aspects of types themselves.
Namespaces

Simple languages, like C and FORTRAN, often have a single global namespace

This causes problems in large programs due to name collisions—i.e., two different programmers (or pieces of code) using the same name for different purposes—are likely

In addition, it often leads to situations where components of a program are tightly coupled, since one component may use a name defined by the other
Modularity

Modular programming addresses these issues

A *module* is a collection of named entities that are related to each other in some way

Modules provide separate namespaces: different modules have different name spaces, and so can freely use names without worrying about name collisions

Some essential module features:

- Choose which names to export
- Choose which names to keep hidden
- Hide implementation details
Existential Types

\[\tau ::= \text{int} \]
\[\quad | \ \tau_1 \to \tau_2 \]
\[\quad | \ \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \]
\[\quad | \ \exists X. \ \tau \]
\[\quad | \ X \]

An existential type is written \(\exists X. \ \tau \), where type variable \(X \) may occur in \(\tau \)

If a value has type \(\exists X. \ \tau \), it means that it is a pair \(\{ \tau', v \} \) of a type \(\tau' \) and a value \(v \), such that \(v \) has type \(\tau \{ \tau'/X \} \)
Syntax

\[e ::= x \\
| \lambda x: \tau. e \\
| e_1 \, e_2 \\
| n \\
| e_1 + e_2 \\
| \{ l_1 = e_1, \ldots, l_n = e_n \} \\
| e.l \\
| \text{pack} \{ \tau_1, e \} \text{ as } \exists X. \tau_2 \\
| \text{unpack} \{ X, x \} = e_1 \text{ in } e_2 \]

\[v ::= n \\
| \lambda x: \tau. e \\
| \{ l_1 = v_1, \ldots, l_n = v_n \} \\
| \text{pack} \{ \tau_1, v \} \text{ as } \exists X. \tau_2 \]
Dynamic Semantics

\[E ::= \ldots \]

\[\mid \text{pack} \{\tau_1, E\} \text{ as } \exists X. \tau_2 \]

\[\mid \text{unpack} \{X, x\} = E \text{ in } e \]

unpack \{X, x\} = (pack \{\tau_1, v\} \text{ as } \exists Y. \tau_2) \text{ in } e \rightarrow e\{v/x\}\{\tau_1/X\}
\[
\Delta, \Gamma \vdash e : \tau_2 \{\tau_1/X\} \quad \Delta \vdash \exists X. \tau_2 \text{ ok}
\]
\[
\Delta, \Gamma \vdash \text{pack } \{\tau_1, e\} \text{ as } \exists X. \tau_2 : \exists X. \tau_2
\]

\[
\Delta, \Gamma \vdash e_1 : \exists X. \tau_1 \quad \Delta \cup \{X\}, \Gamma, x : \tau_1 \vdash e_2 : \tau_2 \quad \Delta \vdash \tau_2 \text{ ok}
\]
\[
\Delta, \Gamma \vdash \text{unpack } \{X, x\} = e_1 \text{ in } e_2 : \tau_2
\]

Note that in the typing rule for unpack, the side condition \(\Delta \vdash \tau_2 \text{ ok} \) ensures that the existentially quantified type variable \(X \) does not appear free in \(\tau_2 \).
Example

\[\text{let } \text{counterADT } = \]
\[
\text{pack } \{ \text{int},
\]
\[
\quad \{ \text{new } = 0,
\]
\[
\quad \quad \text{get } = \lambda i : \text{int}. \; i,
\]
\[
\quad \quad \text{inc } = \lambda i : \text{int}. \; i + 1 \} \}
\]

\text{as}

\[\exists \text{Counter}.\]
\[
\{ \text{new } : \text{Counter},
\]
\[
\quad \text{get } : \text{Counter } \rightarrow \text{int},
\]
\[
\quad \text{inc } : \text{Counter } \rightarrow \text{Counter}\}
\]

\text{in } \ldots \]
Example, Continued

We can use the existential value counterADT as follows.

```
unpack \{ C, c \} = counterADT in
let y = c.new in
  c.get (c.inc (c.inc y))
```
Example, Continued

We can use the existential value `counterADT` as follows.

```haskell
unpack {C, c} = counterADT in
let y = c.new in
  c.get (c.inc (c.inc y))
```

Note that we annotate the pack construct with the existential type `C, c`.

Why do we do this?
Example, Continued

We can use the existential value `counterADT` as follows.

\[
\text{unpack } \{ C, c \} = \text{counterADT} \text{ in} \\
\text{let } y = c.\text{new } \text{in} \\
c.\text{get } (c.\text{inc } (c.\text{inc } y))
\]

Note that we annotate the pack construct with the existential type

Why do we do this?

Without this annotation, we would not know which occurrences of the witness type are intended to be replaced with the type variable, and which are intended to be left as the witness type.
We can define alternate, equivalent implementations of our counter...

```f
let counterADT =
  pack {{x:int},
    { new = {x = 0},
      get = λr:{x:int}.r.x,
      inc = λr:{x:int}.r.x + 1 } }
  as
  ∃Counter.
  { new : Counter,
    get : Counter → int,
    inc : Counter → Counter }

in . . .
```
Existentials and Type Variables

Note that in the typing rule for unpack, the side condition $\Delta \vdash \tau_2 \text{ ok}$ ensures that the existentially quantified type variable X does not appear free in τ_2.
Note that in the typing rule for unpack, the side condition $\Delta \vdash \tau_2 \text{ ok}$ ensures that the existentially quantified type variable X does not appear free in τ_2.

This rules out programs such as,

\[
\text{let } m = \\
\quad \text{pack } \{\text{int}, \{a = 5, f = \lambda x: \text{int}.x + 1\}\} \text{ as } \exists X. \{a : X, f : X \to X\} \\
\text{in} \\
\text{unpack } \{X, x\} = m \text{ in } x.f.x.a
\]

where the type of $(f.x.x.a)$ has X free
Encoding Existentials

It turns out that we can encode existentials using polymorphism!

The idea is to use a Church encoding, where an existential value is a function that takes a type and then calls the continuation.
Encoding Existentials

It turns out that we can encode existentials using polymorphism!

The idea is to use a Church encoding, where an existential value is a function that takes a type and then calls the continuation

\[
\exists X. \tau \triangleq \forall Y. (\forall X. \tau \to Y) \to Y
\]

pack \{\tau_1, e\} as \(\exists X. \tau_2\) \(\triangleq\) \(\forall Y. \lambda f: (\forall X. \tau_2 \to Y). f[\tau_1] e\)

unpack \(\{X, x\} = e_1\) in \(e_2\) \(\triangleq\) \(e_1[\tau_2] (\forall X. \lambda x: \tau_1. e_2)\)

where \(e_1\) has type \(\exists X. \tau_1\) and \(e_2\) has type \(\tau_2\)

For more details see Pierce, Chapter 24