Lecture 25
Compiling with Continuations

31 October 2014
Announcements

- PS 7 out; due next Thursday
- Prelim II conflicts
- Foster office hours 11-12pm
- Next Thursday: Talk on *Iron* by Yaron Minsky PhD ’02
Roadmap

CS 4120 in one lecture!
Roadmap

CS 4120 in one lecture!

Source Language
\(\lambda\)-calculus with pairs and integers
Roadmap

CS 4120 in one lecture!

Source Language
\(\lambda\)-calculus with pairs and integers

Intermediate Language #1
\(\lambda\)-calculus in CPS
Roadmap

CS 4120 in one lecture!

Source Language
\(\lambda\)-calculus with pairs and integers

Intermediate Language #1
\(\lambda\)-calculus in CPS

Intermediate Language #2
\(\lambda\)-calculus in CPS + Closure Conversion
Roadmap

CS 4120 in one lecture!

Source Language
\(\lambda\)-calculus with pairs and integers

Intermediate Language #1
\(\lambda\)-calculus in CPS

Intermediate Language #2
\(\lambda\)-calculus in CPS + Closure Conversion

Machine Code
Simple RISC-like Assembly
Continuations

We’ve seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters
We’ve seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Because continuations expose control explicitly, they make a good intermediate language for compilation—control is exposed explicitly in machine code as well.
Continuations

We’ve seen continuations several times in this course already:
- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Because continuations expose control explicitly, they make a good intermediate language for compilation—control is exposed explicitly in machine code as well.

To show this, we will develop a translation from a full-featured functional language down to an assembly-like language.
Continuations

We’ve seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Because continuations expose control explicitly, they make a good intermediate language for compilation—control is exposed explicitly in machine code as well.

To show this, we will develop a translation from a full-featured functional language down to an assembly-like language.

This translation will give a fairly complete recipe for compiling any of the features we have discussed over the past few weeks all the way down to hardware.
We’ll start from (untyped) λ-calculus with pairs and integers.

\[
e ::= x \\
| \lambda x. e \\
| e_1 e_2 \\
| (e_1, e_2) \\
| \# i e \\
| n \\
| e_1 + e_2
\]
A program p consists of a series of basic blocks bb.

$$p ::= bb_1; bb_2; \ldots; bb_n$$
Target Language

\[p ::= bb_1; bb_2; \ldots; bb_n \]
\[bb ::= lb : c_1; c_2; \ldots; c_n; \text{jump } x \]

A basic block has a label \(lb \) and a sequence of commands \(c \), ending with jump
Target Language

\[p ::= bb_1; bb_2; \ldots; bb_n \]

\[bb ::= lb : c_1; c_2; \ldots; c_n; \text{jump } x \]

\[c ::= \text{mov } x_1, x_2 \]

Commands correspond to assembly language instructions and are largely self-evident.
Target Language

\[p ::= bb_1; bb_2; \ldots; bb_n \]

\[bb ::= lb : c_1; c_2; \ldots; c_n; \text{jump } x \]

\[c ::= \text{mov } x_1, x_2 \]

\[| \text{mov } x, n \]

Commands correspond to assembly language instructions and are largely self-evident.
Target Language

\[
p ::= bb_1; bb_2; \ldots; bb_n
\]
\[
bb ::= lb : c_1; c_2; \ldots; c_n; \text{jump } x
\]
\[
c ::= \text{mov } x_1, x_2
\]
\[
| \text{mov } x, n
\]
\[
| \text{mov } x, lb
\]

Commands correspond to assembly language instructions and are largely self-evident.
Target Language

\[p ::= \ bb_1 ; \ bb_2 ; \ldots ; \ bb_n \]

\[\bb ::= \ \text{lb} : \ c_1 ; \ c_2 ; \ldots ; \ c_n ; \text{jump} \ x \]

\[\ c ::= \ \text{mov} \ x_1 , \ x_2 \]
\[\ |
\[\ |
\[\ |
\[\ |
\[\ |

\text{Commands correspond to assembly language instructions and are largely self-evident.} \]
Target Language

\[p ::= bb_1; bb_2; \ldots; bb_n \]
\[bb ::= lb : c_1; c_2; \ldots; c_n; \text{jump } x \]
\[c ::= \text{mov } x_1, x_2 \]
\[\quad \mid \text{mov } x, n \]
\[\quad \mid \text{mov } x, lb \]
\[\quad \mid \text{add } x_1, x_2, x_3 \]
\[\quad \mid \text{load } x_1, x_2[n] \]

Commands correspond to assembly language instructions and are largely self-evident.
Target Language

\[p ::= bb_1; bb_2; \ldots; bb_n \]

\[bb ::= lb : c_1; c_2; \ldots; c_n; \text{jump } x \]

\[c ::= \text{mov } x_1, x_2 \]
\[\quad | \quad \text{mov } x, n \]
\[\quad | \quad \text{mov } x, lb \]
\[\quad | \quad \text{add } x_1, x_2, x_3 \]
\[\quad | \quad \text{load } x_1, x_2[n] \]
\[\quad | \quad \text{store } x_1, x_2[n] \]

Commands correspond to assembly language instructions and are largely self-evident.
The only one that is non-standard is malloc. It allocates n words of space and places its address into a special register r_0. Ignoring garbage, it can be implemented as simply as add $r_0, r_0, -n$.

\[
\begin{align*}
p &::= bb_1; bb_2; \ldots; bb_n \\
bb &::= lb : c_1; c_2; \ldots; c_n; \text{jump } x \\
c &::= \text{mov } x_1, x_2 \\
&\mid \text{mov } x, n \\
&\mid \text{mov } x, lb \\
&\mid \text{add } x_1, x_2, x_3 \\
&\mid \text{load } x_1, x_2[n] \\
&\mid \text{store } x_1, x_2[n] \\
&\mid \text{malloc } n
\end{align*}
\]
Intermediate Language

\[
\begin{align*}
 c \ ::= & \text{ let } x = e \text{ in } c \\
 & \text{ } | \text{ } v_1 \; v_2 \; v_3 \\
 & \text{ } | \text{ } v_1 \; v_2
\end{align*}
\]

Commands \(c \) look like basic blocks.
Intermediate Language

\[
\begin{align*}
 c &::= \text{let } x = e \text{ in } c \\
 &\quad | \quad v_1 \ v_2 \ v_3 \\
 &\quad | \quad v_1 \ v_2 \\
 e &::= \ v \ | \ v_1 + v_2 \ | \ (v_1, v_2) \ | \ (#i v)
\end{align*}
\]

There are no subexpressions in the language!
Intermediate Language

\[
\begin{align*}
c & ::= \text{let } x = e \text{ in } c \\
& \mid v_1 v_2 v_3 \\
& \mid v_1 v_2 \\
e & ::= v \mid v_1 + v_2 \mid (v_1, v_2) \mid (#i v) \\
v & ::= n \mid x \mid \lambda x. \lambda k. c \mid \text{halt} \mid \lambda x. c
\end{align*}
\]

Abstractions encoding continuations are marked with an underline. These are called *administrative lambdas* and can be eliminated at compile time.
CPS Translation

The contract of the translation is that $[e]k$ will evaluate e and pass its result to the continuation k.

To translate an entire program, we use $k = \text{halt}$, where halt is the continuation to send the result of the entire program to.
CPS Translation

\[[x] k = k x \]
CPS Translation

\[[x] k = k x \]
\[[n] k = k n \]
CPS Translation

\[[x] \ k \ = \ k \ x \]

\[[n] \ k \ = \ k \ n \]

\[[(e_1 + e_2)] \ k \ = \ [e_1] (\lambda x_1. [e_2] (\lambda x_2. \text{let } z = x_1 + x_2 \text{ in } k \ z)) \]
CPS Translation

\[
\begin{align*}
\llbracket x \rrbracket k &= k x \\
\llbracket n \rrbracket k &= k n \\
\llbracket (e_1 + e_2) \rrbracket k &= \llbracket e_1 \rrbracket (\lambda x_1. \llbracket e_2 \rrbracket (\lambda x_2. \text{let } z = x_1 + x_2 \text{ in } k z)) \\
\llbracket (e_1, e_2) \rrbracket k &= \llbracket e_1 \rrbracket (\lambda x_1. \llbracket e_2 \rrbracket (\lambda x_2. \text{let } t = (x_1, x_2) \text{ in } k t))
\end{align*}
\]
\[
\begin{align*}
[x] \ k & = \ k \ x \\
[n] \ k & = \ k \ n \\
[(e_1 + e_2)] \ k & = \ [e_1](\lambda x_1. \ [e_2](\lambda x_2. \ \text{let } z = x_1 + x_2 \ \text{in } k \ z)) \\
[(e_1, e_2)] \ k & = \ [e_1]\big(\lambda x_1. \ [e_2]\big(\lambda x_2. \ \text{let } t = (x_1, x_2) \ \text{in } k \ t\big)\big) \\
[#i \ e] \ k & = \ [e]\big(\lambda t. \ \text{let } y = #i \ t \ \text{in } k \ y\big)
\end{align*}
\]
\[
\begin{align*}
\llbracket x \rrbracket_k &= k x \\
\llbracket n \rrbracket_k &= k n \\
\llbracket (e_1 + e_2) \rrbracket_k &= \llbracket e_1 \rrbracket (\lambda x_1. \llbracket e_2 \rrbracket (\lambda x_2. \text{let } z = x_1 + x_2 \text{ in } k z)) \\
\llbracket (e_1, e_2) \rrbracket_k &= \llbracket e_1 \rrbracket (\lambda x_1. \llbracket e_2 \rrbracket (\lambda x_2. \text{let } t = (x_1, x_2) \text{ in } k t)) \\
\llbracket \#i e \rrbracket_k &= \llbracket e \rrbracket (\lambda t. \text{let } y = \#i t \text{ in } k y) \\
\llbracket \lambda x. e \rrbracket_k &= k (\lambda x. \lambda k'. \llbracket e \rrbracket k')
\end{align*}
\]
\[
\begin{align*}
[x] \ k &= k \ x \\
[n] \ k &= k \ n \\
[(e_1 + e_2)] \ k &= [e_1](\lambda x_1. [e_2](\lambda x_2. \text{let } z = x_1 + x_2 \text{ in } k \ z)) \\
[(e_1, e_2)] \ k &= [e_1]\left(\lambda x_1. [e_2](\lambda x_2. \text{let } t = (x_1, x_2) \text{ in } k \ t)\right) \\
[#i \ e] \ k &= [e](\lambda t. \text{let } y = \#i \ t \text{ in } k \ y) \\
[\lambda x. e] \ k &= k (\lambda x. \lambda k'. [e] \ k') \\
[e_1 \ e_2] \ k &= [e_1]\left(\lambda f. [e_2](\lambda v. f \ v \ k)\right)
\end{align*}
\]
Example

Let’s translate the expression $[(\lambda a. #1 a) (3, 4)] k$, using $k = \text{halt}$.
Example

Let’s translate the expression $\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket k$, using $k = \text{halt}$.

$\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket k$
Let’s translate the expression $\llbracket (\lambda a. \#_1 a) (3, 4) \rrbracket k$, using $k = \text{halt}$.

$$
\begin{align*}
\llbracket (\lambda a. \#_1 a) (3, 4) \rrbracket k \\
= \llbracket \lambda a. \#_1 a \rrbracket (\lambda f. \llbracket (3, 4) \rrbracket (\lambda v. f v k))
\end{align*}
$$
Example

Let’s translate the expression $\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket$ k, using $k = \text{halt}$.

\[
\begin{align*}
\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket & \quad k \\
= & \quad \llbracket \lambda a. \#1 a \rrbracket (\lambda f. \llbracket (3, 4) \rrbracket (\lambda v. f \, v \, k)) \\
= & \quad (\lambda f. \llbracket (3, 4) \rrbracket (\lambda v. f \, v \, k)) (\lambda a. \lambda k'. \llbracket \#1 a \rrbracket \, k')
\end{align*}
\]
Example

Let’s translate the expression $\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket k$, using $k = \text{halt}$.

\[
\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket k \\
= \llbracket \lambda a. \#1 a \rrbracket (\lambda f. \llbracket (3, 4) \rrbracket (\lambda v. f \ v \ k)) \\
= (\lambda f. \llbracket (3, 4) \rrbracket (\lambda v. f \ v \ k)) (\lambda a. \lambda k'. \llbracket \#1 a \rrbracket k') \\
= (\lambda f. \llbracket 3 \rrbracket (\lambda x_1. \llbracket 4 \rrbracket (\lambda x_2. \text{let } b = (x_1, x_2) \text{ in } (\lambda v. f \ v \ k) \ b)) (\lambda a. \lambda k'. \llbracket \#1 a \rrbracket k')
\]
Example

Let’s translate the expression \(\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket \) \(k \), using \(k = \text{halt} \).

\[
\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket \ k \\
= \llbracket \lambda a. \#1 a \rrbracket (\lambda f. \llbracket (3, 4) \rrbracket (\lambda v. f v k)) \\
= (\lambda f. \llbracket (3, 4) \rrbracket (\lambda v. f v k)) (\lambda a. \lambda k'. \llbracket \#1 a \rrbracket \ k') \\
= (\lambda f. [3] (\lambda x_1. [4] (\lambda x_2. \text{let } b = (x_1, x_2) \text{ in } (\lambda v. f v k) b)) (\lambda a. \lambda k'. \llbracket \#1 a \rrbracket \ k') \\
= (\lambda f. (\lambda x_1. (\lambda x_2. \text{let } b = (x_1, x_2) \text{ in } (\lambda v. f v k) b) 4) 3) (\lambda a. \lambda k'. \llbracket \#1 a \rrbracket \ k')
\]
Example

Let’s translate the expression \(\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket k \), using \(k = \text{halt} \).

\[
\begin{align*}
\llbracket (\lambda a. \#1 a) (3, 4) \rrbracket k &= \llbracket \lambda a. \#1 a \rrbracket \ (\lambda f. \llbracket (3, 4) \rrbracket (\lambda v. f v k)) \\
 &= (\lambda f. \llbracket (3, 4) \rrbracket (\lambda v. f v k)) (\lambda a. \lambda k'. \llbracket \#1 a \rrbracket k') \\
 &= (\lambda f. \llbracket 3 \rrbracket (\lambda x_1. \llbracket 4 \rrbracket (\lambda x_2. \text{let } b = (x_1, x_2) \text{ in } (\lambda v. f v k) b)) \\
&\quad (\lambda a. \lambda k'. \llbracket \#1 a \rrbracket k') \\
 &= (\lambda f. \llbracket 3 \rrbracket \ (\lambda x_1. (\lambda x_2. \text{let } b = (x_1, x_2) \text{ in } (\lambda v. f v k) b) 4) 3) \\
&\quad (\lambda a. \lambda k'. \llbracket \#1 a \rrbracket k') \\
 &= (\lambda f. \llbracket 3 \rrbracket \ (\lambda x_1. (\lambda x_2. \text{let } b = (x_1, x_2) \text{ in } (\lambda v. f v k) b) 4) 3) \\
&\quad (\lambda a. \lambda k'. \llbracket a \rrbracket (\lambda t. \text{let } y = \#1 t \text{ in } k' t))
\end{align*}
\]
Optimization

Clearly, the translation generates a lot of administrative λs!
Optimization

Clearly, the translation generates a lot of administrative λs!

To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λs.
Optimization

Clearly, the translation generates a lot of administrative λs!

To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λs.

We can eliminate applications to variables by copy propagation:

\[(\lambda x. e) y \rightarrow e[y/x]\]
Optimization

Clearly, the translation generates a lot of administrative $\texttt{\lambda}$s!

To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative $\texttt{\lambda}$s.

We can eliminate applications to variables by copy propagation:

$$(\lambda x. e) y \rightarrow e[y/x]$$

Other lambdas can be converted into lets:

$$(\lambda x . c) v \rightarrow \text{let } x = v \text{ in } c$$
Optimization

Clearly, the translation generates a lot of administrative λs!

To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λs.

We can eliminate applications to variables by copy propagation:

$$(\lambda x.e) y \rightarrow e[y/x]$$

Other lambdas can be converted into lets:

$$(\lambda x.c)v \rightarrow \text{let } x = v \text{ in } c$$

We can also perform administrative η-reductions:

$$\lambda x.kx \rightarrow k$$
Example, Redux

After applying these rewrite rules to the expression we had previously, we obtain the following:

\[
\begin{align*}
\text{let } f = \lambda a. \lambda k'. \text{let } y = \#1 a \text{ in } k' y \text{ in} \\
\text{let } x_1 = 3 \text{ in} \\
\text{let } x_2 = 4 \text{ in} \\
\text{let } b = (x_1, x_2) \text{ in} \\
f b k
\end{align*}
\]

This is starting to look a lot more like our target language!
Partial Evaluation

The idea of separating administrative terms from real terms and performing compile-time simplifications is called \textit{partial evaluation}.
Partial Evaluation

The idea of separating administrative terms from real terms and performing compile-time simplifications is called *partial evaluation*.

Partial evaluation is a general and powerful technique that also applies in many other contexts.
The idea of separating administrative terms from real terms and performing compile-time simplifications is called *partial evaluation*.

Partial evaluation is a general and powerful technique that also applies in many other contexts.

Here, it allows us to write a very simple CPS conversion that treats all continuations uniformly, and perform a number of control optimizations.
Partial Evaluation

The idea of separating administrative terms from real terms and performing compile-time simplifications is called \textit{partial evaluation}.

Partial evaluation is a general and powerful technique that also applies in many other contexts.

Here, it allows us to write a very simple CPS conversion that treats all continuations uniformly, and perform a number of control optimizations.

Note that we may not be able to remove all administrative lambdas. Any that cannot be eliminated using the rules above are converted into real lambdas.
Roadmap

Source Language
\(\lambda \)-calculus with pairs and integers

Intermediate Language #1
\(\lambda \)-calculus in CPS

Intermediate Language #2
\(\lambda \)-calculus in CPS + Closure Conversion
Closure Conversion

The next step is to bring all λs to the top level, with no nesting.

$$P ::= \begin{align*}
\text{let } x_f &= \lambda x_1. \ldots \lambda x_n. \lambda k. c \text{ in } P \\
|&\quad \text{let } x_c &= \lambda x_1. \ldots \lambda x_n. c \text{ in } P \\
|&\quad c
\end{align*}$$

$$c ::= \text{let } x = e \text{ in } c \mid x_1 x_2 \ldots x_n$$

$$e ::= n \mid x \mid \text{halt} \mid x_1 + x_2 \mid (x_1, x_2) \mid \#i x$$

This translation requires the construction of closures that capture the free variables of the lambda abstractions and is known as closure conversion.
Closure Conversion

The main part of the translation is captured by the following:

\[
\begin{align*}
\sem\lambda x. \lambda k. c \sigma &= \\
&\text{let } (c', \sigma') = \sem c \sigma \text{ in} \\
&\text{let } y_1, \ldots, y_n = \text{fvs}(\lambda x. \lambda k. c') \text{ in} \\
&(f y_1 \ldots y_n, \sigma'[f \mapsto \lambda y_1. \ldots \lambda y_n. \lambda x. \lambda k. c']) \text{ where } f \text{ fresh}
\end{align*}
\]
Closure Conversion

The main part of the translation is captured by the following:

\[
\begin{array}{l}
\llbracket \lambda x. \lambda k. c \rrbracket \sigma = \\
\text{let } (c', \sigma') = \llbracket c \rrbracket \sigma \text{ in} \\
\text{let } y_1, \ldots, y_n = \text{fvs}(\lambda x. \lambda k. c') \text{ in} \\
(f y_1 \ldots y_n, \sigma'[f \mapsto \lambda y_1. \ldots \lambda y_n. \lambda x. \lambda k. c']) \text{ where } f \text{ fresh}
\end{array}
\]

The translation of \(\lambda x. \lambda k. c \) above first translates the body \(c \), then creates a new function \(f \) parameterized on \(x \) as well as the free variables \(y_1 \) to \(y_n \) of the translated body.
Closure Conversion

The main part of the translation is captured by the following:

\[
\begin{align*}
\llbracket \lambda x. \lambda k. \ c \rrbracket \ \sigma &= \\
&\text{let } (c', \sigma') = \llbracket c \rrbracket \ \sigma \text{ in} \\
&\text{let } y_1, \ldots, y_n = \text{fvs}(\lambda x. \lambda k. \ c') \text{ in} \\
&(f \ y_1 \ \ldots \ y_n, \ \sigma'[f \mapsto \lambda y_1. \ \ldots \ \lambda y_n. \ \lambda x. \ \lambda k. \ c']) \text{ where } f \text{ fresh}
\end{align*}
\]

The translation of \(\lambda x. \lambda k. \ c \) above first translates the body \(c \), then creates a new function \(f \) parameterized on \(x \) as well as the free variables \(y_1 \) to \(y_n \) of the translated body.

It then adds \(f \) to the environment \(\sigma \) replaces the entire lambda with \((f \ y_n \ \ldots \ y_n) \)
The main part of the translation is captured by the following:

\[
\llbracket \lambda x. \lambda k. \ c \rrbracket \ \sigma = \\
\quad \text{let } (c', \sigma') = \llbracket c \rrbracket \ \sigma \text{ in} \\
\quad \text{let } y_1, \ldots, y_n = fvs(\lambda x. \lambda k. \ c') \text{ in} \\
\quad (f y_1 \ldots y_n, \ \sigma'[f \mapsto \lambda y_1. \ldots \lambda y_n. \ \lambda x. \ \lambda k. \ c']) \quad \text{where } f \text{ fresh}
\]

The translation of \(\lambda x. \lambda k. \ c \) above first translates the body \(c \), then creates a new function \(f \) parameterized on \(x \) as well as the free variables \(y_1 \) to \(y_n \) of the translated body.

It then adds \(f \) to the environment \(\sigma \) replaces the entire lambda with \((f y_n \ldots y_n)\).

When applied to an entire program, this has the effect of eliminating all nested \(\lambda \)s.
Roadmap

Source Language
\(\lambda \)-calculus with pairs and integers

Intermediate Language #1
\(\lambda \)-calculus in CPS

Intermediate Language #2
\(\lambda \)-calculus in CPS + Closure Conversion

Machine Code
Simple RISC-like Assembly
Code Generation

\[P[c] = \text{main : } C[c]; \]
\[\text{halt : } \]
$$\mathcal{P}[[\text{let } x_f = \lambda x_1. \ldots \lambda x_n. \lambda k. c \text{ in } p]] = x_f : \text{mov } x_1, a_1;$$

$$\ldots$$

$$\text{mov } x_n, a_n;$$

$$\text{mov } k, ra;$$

$$c[c];$$

$$\mathcal{P}[p]$$
\[P\left[\text{let } x_c = \lambda x_1. \ldots \lambda x_n. c \text{ in } p \right] = x_c \colon \text{mov } x_1, a_1; \\
\quad \vdots \\
\quad \text{mov } x_n, a_n; \\
C[\![c]\!]; \\
P[\![p]\!] \]
Code Generation

\[
\mathcal{C}[\text{let } x = n \text{ in } c] = \text{mov } x, n; \\
\mathcal{C}[c]
\]
\[C[\text{let } x_1 = x_2 \text{ in } c] = \text{mov } x_1, x_2; \]
\[C[c] \]
Code Generation

\[C[\text{let } x = x_1 + x_2 \text{ in } c] = \text{add } x_1, x_2, x; \]
\[C[c] \]
\[C[\text{let } x = (x_1, x_2) \text{ in } c] = \text{malloc 2;} \]
\[\text{mov } x, r_0; \]
\[\text{store } x_1, x[0]; \]
\[\text{store } x_2, x[1]; \]
\[C[c] \]
\[C[\text{let } x = \#i x_1 \text{ in } c] = \text{load } x, x_1[i - 1]; C[c] \]
\[C[x \ k \ x_1 \ldots \ x_n] = \text{mov } a_1, x_1; \]
\[
\vdots
\]
\[
\text{mov } a_n, x_n;\]
\[
\text{mov } ra, k;\]
\[
\text{jump } x\]
Final Thoughts

Note that we assume an infinite supply of registers. We would need to do register allocation and possibly spill registers to a stack to obtain working code.

Also, while this translation is very simple, it is not particularly efficient. For example, we are doing a lot of register moves when calling functions and when starting the function body, which could be optimized.