Announcements

- PS 5 due tonight
- PS 6 out today
Normalization

The simply-typed lambda calculus enjoys a remarkable property...

...every well-typed program terminates.
Normalization

The simply-typed lambda calculus enjoys a remarkable property...

...every well-typed program terminates.

We’ll spend this lecture proving this fact.
Simply-Typed Lambda Calculus

Syntax

expressions

\[e ::= x | \lambda x : \tau. e | e_1 e_2 | () \]

values

\[\nu ::= \lambda x : \tau. e | () \]

types

\[\tau ::= \text{unit} | \tau_1 \rightarrow \tau_2 \]
Simply-Typed Lambda Calculus

Syntax

expressions

\[e ::= x \mid \lambda x : \tau . e \mid e_1 \; e_2 \mid () \]

values

\[v ::= \lambda x : \tau . e \mid () \]

types

\[\tau ::= \text{unit} \mid \tau_1 \rightarrow \tau_2 \]

Dynamic Semantics

\[E ::= [\cdot] \mid E \; e \mid v \; E \]

\[e \rightarrow e' \quad \frac{E[e] \rightarrow E[e']} \]

\[(\lambda x : \tau . e) \; v \rightarrow e \{ v/x \} \]
Simply-Typed Lambda Calculus

Static Semantics

\[\Gamma \vdash () : \text{unit} \]

\[\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \]

T-Var

\[\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x : \tau. e : \tau \rightarrow \tau'} \]

T-Abs

\[\frac{\Gamma \vdash e_1 : \tau \rightarrow \tau' \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 e_2 : \tau'} \]

T-App
Supporting Lemmas

Lemma (Inversion)

- If $\Gamma \vdash x : \tau$ then $\Gamma(x) = \tau$
- If $\Gamma \vdash \lambda x : \tau_1. e : \tau$ then $\tau = \tau_1 \rightarrow \tau_2$ and $\Gamma, x : \tau_1 \vdash e : \tau_2$.
- If $\Gamma \vdash e_1 e_2 : \tau$ then $\Gamma \vdash e_1 : \tau' \rightarrow \tau$ and $\Gamma \vdash e_2 ty\tau'$.
Supporting Lemmas

Lemma (Inversion)
- If $\Gamma \vdash x : \tau$ then $\Gamma(x) = \tau$
- If $\Gamma \vdash \lambda x : \tau_1. e : \tau$ then $\tau = \tau_1 \rightarrow \tau_2$ and $\Gamma, x : \tau_1 \vdash e : \tau_2$.
- If $\Gamma \vdash e_1 e_2 : \tau$ then $\Gamma \vdash e_1 : \tau' \rightarrow \tau$ and $\Gamma \vdash e_2 t y \tau'$.

Lemma (Canonical Forms)
- If $\Gamma \vdash v : \text{unit}$ then $v = ()$
- If $\Gamma \vdash v : \tau_1 \rightarrow \tau_2$ then $v = \lambda x : \tau_1. e$ and $\Gamma, x : \tau_1 \vdash e : \tau_2.$
First Attempt

Theorem (Normalization)

If $\vdash e : \tau$ then there exists a value v such that $e \rightarrow^* v$.

(Proof attempt on board)
Idea: define a set with the following properties:

- At base types the set contains all expressions satisfying some property.
- At function types, the set contains all expressions such that the property is preserved whenever we apply the function to an argument of appropriate type that is also in the set.
Idea: define a set with the following properties:

- At base types the set contains all expressions satisfying some property.
- At function types, the set contains all expressions such that the property is preserved whenever we apply the function to an argument of appropriate type that is also in the set.

In our setting, the property will concern normalization...
Definition (Logical Relation)

- \(R_{\text{unit}}(e) \) iff \(\vdash e : \text{unit} \) and \(e \) halts.
- \(R_{\tau_1 \rightarrow \tau_2}(e) \) iff \(\vdash e : \tau_1 \rightarrow \tau_2 \) and \(e \) halts, and for every \(e' \) such that \(R_{\tau_1}(e') \) we have \(R_{\tau_2}(e e') \).
Supporting Lemmas

Lemma

If $R_\tau(e)$ then e halts.
Lemma

If $R_{\tau}(e)$ then e halts.

Lemma

If $\vdash e : \tau$ and $e \rightarrow e'$ then $R_{\tau}(e)$ iff $R_{\tau}(e')$.
Supporting Lemmas

Lemma

If $R_\tau(e)$ then e halts.

Lemma

If $\vdash e: \tau$ and $e \rightarrow e'$ then $R_\tau(e)$ iff $R_\tau(e')$.

Lemma

If $\vdash e: \tau$ then $R_\tau(e)$
Main Lemma

Lemma

If

- \(x_1 : \tau_1 \ldots x_k : \tau_k \vdash e : \tau, \)
- \(\nu_1 \) to \(\nu_k \) are values such that \(\vdash \nu_1 : \tau_1 \) to \(\vdash \nu_k : \tau_k \), and
- \(R_{\tau_1}(\nu_1) \) to \(R_{\tau_k}(\nu_k) \),

then \(R_{\tau}(e\{\nu_1/x_1\} \ldots \{\nu_k/x_k\}). \)

(Proof on board)