Announcements

• Today: PS 5 out

• Friday: no Foster office hours

• Friday: guest lecture by Clarkson
Syntax

\[e ::= x \]
\[\quad | \ \lambda x. \ e \]
\[\quad | \ e_1 \ e_2 \]
\[\quad | \ (e_1, e_2) \]
\[\quad | \ #1 \ e \]
\[\quad | \ #2 \ e \]
\[\quad | \ \text{let } x = e_1 \text{ in } e_2 \]

\[v ::= \lambda x. \ e \]
\[\quad | \ (v_1, v_2) \]
Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid E \, e \]
\[\mid \nu \, E \]
\[\mid (E, \, e) \]
\[\mid (\nu, \, E) \]
\[\mid \#1 \, E \]
\[\mid \#2 \, E \]
\[\mid \text{let } x = E \text{ in } e_2 \]
Products and Let

Semantics

\[
\begin{align*}
 e & \rightarrow e' \\
 E[e] & \rightarrow E[e'] \\
 (\lambda x. e) v & \rightarrow e\{v/x\} \\
 \\
 \#1 (v_1, v_2) & \rightarrow v_1 \\
 \#2 (v_1, v_2) & \rightarrow v_2 \\
 \text{let } x = v \text{ in } e & \rightarrow e\{v/x\}
\end{align*}
\]
Products and Let

Translation

\[T[x] = x \]
\[T[\lambda x. e] = \lambda x. T[e] \]
\[T[e_1 e_2] = T[e_1] T[e_2] \]
\[T[(e_1, e_2)] = (\lambda x. \lambda y. \lambda f. f x y) \ T[e_1] \ T[e_2] \]
\[T[#1 e] = T[e] (\lambda x. \lambda y. x) \]
\[T[#2 e] = T[e] (\lambda x. \lambda y. y) \]
\[T[let \ x = e_1 in e_2] = (\lambda x. T[e_2]) T[e_1] \]
Laziness

Consider the call-by-name λ-calculus...

Syntax

$$
e ::= x

\mid e_1 e_2

\mid \lambda x. \ e

\nu ::= \lambda x. \ e
$$

Semantics

$$
e_1 \rightarrow e'_1

\frac{}{e_1 \ e_2 \rightarrow e'_1 \ e_2}

\frac{}{(\lambda x. \ e_1) \ e_2 \rightarrow e_1 \{e_2/x\}} \quad \beta
$$
Laziness

Translation

\[T[x] = x \ (\lambda y. y) \]
\[T[\lambda x. e] = \lambda x. T[e] \]
\[T[e_1 e_2] = T[e_1] (\lambda z. T[e_2]) \quad \text{z is not a free variable of } e_2 \]
Syntax

\[e ::= x \]
\[\quad | \quad \lambda x. e \]
\[\quad | \quad e_0\ e_1 \]

\[\nu ::= \lambda x. e \]
Syntax

\[
e ::= x \\
 \mid \lambda x. e \\
 \mid e_0 \ e_1 \\
 \mid \text{ref } e
\]

\[
\nu ::= \lambda x. e
\]
Syntax

\[e ::= x \]
\[\quad \mid \lambda x. e \]
\[\quad \mid e_0 e_1 \]
\[\quad \mid \text{ref } e \]
\[\quad \mid !e \]

\[\nu ::= \lambda x. e \]
References

Syntax

\[e ::= x \]
\[\quad | \lambda x. e \]
\[\quad | e_0 e_1 \]
\[\quad | \text{ref } e \]
\[\quad | !e \]
\[\quad | e_1 := e_2 \]

\[\nu ::= \lambda x. e \]
Syntax

\[e ::= x \]
\[\quad | \quad \lambda x. e \]
\[\quad | \quad e_0 e_1 \]
\[\quad | \quad \text{ref } e \]
\[\quad | \quad !e \]
\[\quad | \quad e_1 ::= e_2 \]
\[\quad | \quad \ell \]

\[v ::= \lambda x. e \]
Syntactically, we define:

\[e ::= x \]
\[\mid \lambda x. e \]
\[\mid e_0 e_1 \]
\[\mid \text{ref } e \]
\[\mid !e \]
\[\mid e_1 := e_2 \]
\[\mid \ell \]

\[\nu ::= \lambda x. e \]
\[\mid \ell \]
Evaluation Contexts

\[E ::= [\cdot] \]
\[| E e \]
\[| v E \]
Evaluation Contexts

\[E ::= [\cdot] \]
\[| E e \]
\[| v E \]
\[| \text{ref } E \]
Evaluation Contexts

\[
E ::= [\cdot]
\]

\[
| E e
\]

\[
| v E
\]

\[
| \text{ref } E
\]

\[
| !E
\]
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[| E e \]
\[| v E \]
\[| \text{ref } E \]
\[| !E \]
\[| E ::= e \]
Evaluation Contexts

\[E ::= [\cdot] \]
\[| \hspace{5mm} E \cdot e \]
\[| \hspace{5mm} v \cdot E \]
\[| \hspace{5mm} \text{ref} \cdot E \]
\[| \hspace{5mm} !E \]
\[| \hspace{5mm} E ::= e \]
\[| \hspace{5mm} v ::= E \]
References

Semantics

\[
\begin{align*}
\langle \sigma, e \rangle &\rightarrow \langle \sigma', e' \rangle \\
\langle \sigma, E[e] \rangle &\rightarrow \langle \sigma', E[e'] \rangle \\
\ell \notin \text{dom}(\sigma) &\quad \Rightarrow \quad \langle \sigma, \text{ref } v \rangle \rightarrow \langle \sigma[\ell \mapsto v], \ell \rangle \\
\sigma(\ell) &= v &\quad \Rightarrow \quad \langle \sigma, !\ell \rangle \rightarrow \langle \sigma, v \rangle \\
\langle \sigma, \ell := v \rangle &\rightarrow \langle \sigma[\ell \mapsto v], v \rangle
\end{align*}
\]

\[\langle \sigma, (\lambda x. e) \, v \rangle \rightarrow \langle \sigma, e\{v/x\} \rangle \quad \beta\]
Translation

...left as an exercise to the reader ;-)
Adequacy

How do we know if a translation is correct?
Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

\[\forall e \in \mathbf{Exp}_{\text{src}}. \text{if } \mathcal{T}[e] \xrightarrow{*_{\text{trg}}} v' \text{ then } \exists v. e \xrightarrow{*_{\text{src}}} v \text{ and } v' \text{ equivalent to } v \]
Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

\[\forall e \in \text{Exp}_{\text{src}}, \text{if } T[e] \rightarrow_{\text{trg}}^* v' \text{ then } \exists v. e \rightarrow_{\text{src}}^* v \text{ and } v' \text{ equivalent to } v \]

...and every source evaluation should have a target evaluation:

Definition (Completeness)

\[\forall e \in \text{Exp}_{\text{src}}, \text{if } e \rightarrow_{\text{src}}^* v \text{ then } \exists v'. T[e] \rightarrow_{\text{trg}}^* v' \text{ and } v' \text{ equivalent to } v \]
Continuations

In the preceding translations, the control structure of the source language was translated directly into the corresponding control structure in the target language.

For example:

\[T[\lambda x. e] = \lambda x. T[e] \]
\[T[e_1 e_2] = T[e_1] T[e_2] \]

What can go wrong with this approach?
Continuations

- A snippet of code that represents “the rest of the program”
- Can be used directly by programmers...
- ...or in program transformations by a compiler
- Make the control flow of the program explicit
- Also useful for defining the meaning of features like exceptions
Example

Consider the following expression:

$$(\lambda x. x) ((1 + 2) + 3) + 4$$
Example

Consider the following expression:

$$(\lambda x. x) \left((1 + 2) + 3 \right) + 4$$

If we make all of the continuations explicit, we obtain the following:

$$k_0 = \lambda v. (\lambda x. x) \, v$$
Example

Consider the following expression:

$$(\lambda x. x) \ ((1 + 2) + 3) + 4$$

If we make all of the continuations explicit, we obtain the following:

$$k_0 = \lambda v. \ (\lambda x. x) \ v$$
Consider the following expression:

\[(\lambda x. x) ((1 + 2) + 3) + 4\]

If we make all of the continuations explicit, we obtain the following:

\[k_0 = \lambda v. (\lambda x. x) v\]
\[k_1 = \lambda a. k_0 (a + 4)\]
Example

Consider the following expression:

$$(\lambda x. x) (((1 + 2) + 3) + 4)$$

If we make all of the continuations explicit, we obtain the following:

$$k_0 = \lambda v. (\lambda x. x) \, v$$
$$k_1 = \lambda a. k_0 \, (a + 4)$$
$$k_2 = \lambda b. k_1 \, (b + 3)$$
Example

Consider the following expression:

$$(\lambda x. x) \left((1 + 2) + 3 \right) + 4$$

If we make all of the continuations explicit, we obtain the following:

$$k_0 = \lambda v. (\lambda x. x)\ v$$
$$k_1 = \lambda a. k_0\ (a + 4)$$
$$k_2 = \lambda b. k_1\ (b + 3)$$
$$k_3 = \lambda c. k_2\ (c + 2)$$
Example

Consider the following expression:

\[(\lambda x. x) ((1 + 2) + 3) + 4\]

If we make all of the continuations explicit, we obtain the following:

\[k_0 = \lambda v. (\lambda x. x) \ v\]
\[k_1 = \lambda a. k_0 \ (a + 4)\]
\[k_2 = \lambda b. k_1 \ (b + 3)\]
\[k_3 = \lambda c. k_2 \ (c + 2)\]

The original expression is equivalent to \(k_3 \ 1\), which is just:

\[(\lambda c. (\lambda b. (\lambda a. (\lambda v. (\lambda x. x) \ v) \ (a + 4)) \ (b + 3)) \ (c + 2)) \ 1\]
Example (Continued)

Recall that let \(x = e \) in \(e' \) is syntactic sugar for \((\lambda x. e') \ e\).

Hence, we can rewrite the expression with continuations more succinctly as

\[
\begin{align*}
\text{let } c &= 1 \text{ in } \\
\text{let } b &= c + 2 \text{ in } \\
\text{let } a &= b + 3 \text{ in } \\
\text{let } \nu &= a + 4 \text{ in } \\
(\lambda x. x) \ \nu
\end{align*}
\]
CPS Transformation

We write $CPS[e] k = \ldots$ instead of $CPS[e] = \lambda k. \ldots$

We assume that the new variables introduced are “fresh”.

We write $CPS[e] k = \ldots$ instead of $CPS[e] = \lambda k. \ldots$

We assume that the new variables introduced are “fresh”.
CPS Transformation

\[CPS[n] k = k n \]

We write \(CPS[e] k = \ldots \) instead of \(CPS[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh”.
CPS Transformation

\[\text{CPS}[n] k = k n \]
\[\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \]

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh”.

18
CPS Transformation

\[
\begin{align*}
\text{CPS}[n] k &= k n \\
\text{CPS}[e_1 + e_2] k &= \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \\
\text{CPS}[(e_1, e_2)] k &= \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w)))
\end{align*}
\]

We write \text{CPS}[e] k = \ldots instead of \text{CPS}[e] = \lambda k. \ldots

We assume that the new variables introduced are “fresh”.
CPS Transformation

\[
CPS[e] \quad k = \lambda k \quad \text{(fresh)}
\]

We write \(CPS[e] \quad k = \ldots\) instead of \(CPS[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh”.

\[
\begin{align*}
CPS[n] \quad k &= k \cdot n \\
CPS[e_1 + e_2] \quad k &= CPS[e_1] (\lambda n. CPS[e_2] (\lambda m. k (n + m))) \\
CPS[(e_1, e_2)] \quad k &= CPS[e_1] (\lambda v. CPS[e_2] (\lambda w. k (v, w))) \\
CPS[\#1 e] \quad k &= CPS[e] (\lambda v. k (\#1 v))
\end{align*}
\]
CPS Transformation

\[\text{CPS}[n] k = k n\]
\[\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m)))\]
\[\text{CPS}[(e_1, e_2)] k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w)))\]
\[\text{CPS}[\#1 e] k = \text{CPS}[e] (\lambda v. k (\#1 v))\]
\[\text{CPS}[\#2 e] k = \text{CPS}[e] (\lambda v. k (\#2 v))\]

We write \(\text{CPS}[e] k = \ldots\) instead of \(\text{CPS}[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh”.
CPS Transformation

\[
\begin{align*}
CPS[n]k &= kn \\
CPS[e_1 + e_2]k &= CPS[e_1](\lambda n. CPS[e_2](\lambda m. k(n + m))) \\
CPS[(e_1, e_2)]k &= CPS[e_1](\lambda v. CPS[e_2](\lambda w. k(v, w))) \\
CPS[#1 e]k &= CPS[e](\lambda v. k(#1 v)) \\
CPS[#2 e]k &= CPS[e](\lambda v. k(#2 v)) \\
CPS[x]k &= kx
\end{align*}
\]

We write \(CPS[e]k = \ldots\) instead of \(CPS[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh”.
CPS Transformation

\[
\begin{align*}
\text{CPS}[n] \ k &= k \ n \\
\text{CPS}[e_1 + e_2] \ k &= \text{CPS}[e_1] \ (\lambda n. \text{CPS}[e_2] \ (\lambda m. \ k \ (n + m))) \\
\text{CPS}[(e_1, e_2)] \ k &= \text{CPS}[e_1] \ (\lambda v. \text{CPS}[e_2] \ (\lambda w. \ k \ (v, w))) \\
\text{CPS}[\#1 \ e] \ k &= \text{CPS}[e] \ (\lambda v. \ k \ (#1 \ v)) \\
\text{CPS}[\#2 \ e] \ k &= \text{CPS}[e] \ (\lambda v. \ k \ (#2 \ v)) \\
\text{CPS}[x] \ k &= k \ x \\
\text{CPS}[\lambda x. \ e] \ k &= k \ (\lambda x. \ \lambda k'. \text{CPS}[e] \ k')
\end{align*}
\]

We write \(\text{CPS}[e] \ k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh”.
CPS Transformation

\[
\begin{align*}
\text{CPS} [n] k &= kn \\
\text{CPS} [e_1 + e_2] k &= \text{CPS} [e_1] (\lambda n. \text{CPS} [e_2] (\lambda m. k (n + m))) \\
\text{CPS} [(e_1, e_2)] k &= \text{CPS} [e_1] (\lambda v. \text{CPS} [e_2] (\lambda w. k (v, w))) \\
\text{CPS} [\#1 e] k &= \text{CPS} [e] (\lambda v. k (\#1 v)) \\
\text{CPS} [\#2 e] k &= \text{CPS} [e] (\lambda v. k (\#2 v)) \\
\text{CPS} [x] k &= k x \\
\text{CPS} [\lambda x. e] k &= k (\lambda x. \lambda k'. \text{CPS} [e] k') \\
\text{CPS} [e_1 e_2] k &= \text{CPS} [e_1] (\lambda f. \text{CPS} [e_2] (\lambda v. f v k))
\end{align*}
\]

We write \(\text{CPS} [e] k = \ldots \) instead of \(\text{CPS} [e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh”.