1 Lambda calculus evaluation

There are many different evaluation strategies for the \(\lambda \)-calculus. The most permissive is \textit{full} \(\beta \) \textit{reduction}, which allows any \textit{redex}—i.e., any expression of the form \((\lambda x. e_1) e_2\)—to step to \(e_1[e_2/x] \) at any time. It is defined formally by the following small-step operational semantics rules:

\[
\begin{align*}
 e_1 \to e'_1 &\quad \frac{e_1 \to e'_1}{e_1 e_2 \to e'_1 e_2} \\
 e_2 \to e'_2 &\quad \frac{e_2 \to e'_2}{e_1 e_2 \to e_1 e'_2} \\
 e_1 \to e'_1 &\quad \frac{e_1 \to e'_1}{\lambda x. e_1 \to \lambda x. e'_1} \\
 (\lambda x. e_1) e_2 \to e_1[e_2/x] &\quad \frac{}{(\lambda x. e_1) e_2 \to e_1[e_2/x]}
\end{align*}
\]

The \textit{call by value} (CBV) strategy enforces a more restrictive strategy: it only allows an application to reduce after its argument has been reduced to a value (i.e., a \(\lambda \)-abstraction) and does not allow evaluation under a \(\lambda \). It is described by the following small-step operational semantics rules (here we show a left-to-right version of CBV):

\[
\begin{align*}
 e_1 \to e'_1 &\quad \frac{e_1 \to e'_1}{e_1 e_2 \to e'_1 e_2} \\
 e_2 \to e'_2 &\quad \frac{e_2 \to e'_2}{v_1 e_2 \to v_1 e'_2} \\
 (\lambda x. e_1) v_2 \to e_1[v_2/x] &\quad \frac{}{(\lambda x. e_1) v_2 \to e_1[v_2/x]}
\end{align*}
\]

Finally, the \textit{call by name} (CBN) strategy allows an application to reduce even when its argument is not a value but does not allow evaluation under a \(\lambda \). It is described by the following small-step operational semantics rules:

\[
\begin{align*}
 e_1 \to e'_1 &\quad \frac{e_1 \to e'_1}{e_1 e_2 \to e'_1 e_2} \\
 (\lambda x. e_1) e_2 \to e_1[e_2/x] &\quad \frac{}{(\lambda x. e_1) e_2 \to e_1[e_2/x]}
\end{align*}
\]

2 Confluence

It is not hard to see that the full \(\beta \) reduction strategy is non-deterministic. This raises an interesting question: does the choices made during the evaluation of an expression affect the final result? The answer turns out to be no: full \(\beta \) reduction is \textit{confluent} in the following sense:

Theorem (Confluence). If \(e \to^* e_1 \) and \(e \to^* e_2 \) then there exists \(e' \) such that \(e_1 \to^* e' \) and \(e_2 \to^* e' \).

Confluence can be depicted graphically as follows:

\[
\begin{tikzpicture}
 \node (e) at (0,0) {e};
 \node (e1) at (-1,-1) {e_1};
 \node (e2) at (1,-1) {e_2};
 \node (e') at (0,-2) {e'};
 \path
 (e) edge (e1)
 (e) edge (e2)
 (e1) edge (e')
 (e2) edge (e')
\end{tikzpicture}
\]

Confluence is often also called the Church-Rosser property.

3 Substitution

Each of the evaluation relations for λ-calculus has a β defined in terms of a substitution operation on expressions. Because the expressions involved in the substitution may share some variable names (and because we are working up to α-equivalence) the definition of this operation is slightly subtle and defining it precisely turns out to be tricker than might first appear.

As a first attempt, consider an obvious (but incorrect) definition of the substitution operator. Here we are substituting e for x in some other expression:

\[
\begin{align*}
y\{e/x\} &= \begin{cases}
e & \text{if } y = x \\ y & \text{otherwise} \end{cases} \\
(e_1 e_2)\{e/x\} &= (e_1\{e/x\}) (e_2\{e/x\}) \\
(\lambda y.e_1)\{e/x\} &= \lambda y. (e_1\{e/x\}) \quad \text{where } y \neq x
\end{align*}
\]

Unfortunately this definition produces the wrong results when we substitute an expression with free variables under a λ. For example,

\[
(\lambda y.x)\{y/x\} = (\lambda y.y)
\]

To fix this problem, we need to revise our definition so that when we substitute under a λ we do not accidentally bind variables in the expression we are substituting. The following definition correctly implements capture-avoiding substitution:

\[
\begin{align*}
y\{e/x\} &= \begin{cases}
e & \text{if } y \neq x \\ y & \text{otherwise} \end{cases} \\
(e_1 e_2)\{e/x\} &= (e_1\{e/x\}) (e_2\{e/x\}) \\
(\lambda y.e_1)\{e/x\} &= \lambda y. (e_1\{e/x\}) \quad \text{where } y \neq x \text{ and } y \notin \text{fv}(e)
\end{align*}
\]

Note that in the case for λ-abstractions, we require that the bound variable y be different from the variable x we are substituting for and that y not appear in the free variables of e, the expression we are substituting. Because we work up to α-equivalence, we can always pick y to satisfy these side conditions. For example, to calculate \((\lambda z.x z)\{((w y z)/x)\}) we first rewrite \(\lambda z.x z\) to \(\lambda u.x u\) and then apply the substitution, obtaining \(\lambda u.(w y z) u\) as the result.