CS4110

Programming Languages & Logics

Lecture 3
Inductive Definitions and Proofs

27 August 2012

Announcements

Teaching Assistants
e Brittany Office Hours: Thursdays at 1:30-2:30pm
e Raghu Office Hours: Mondays at 5pm-6pm

Piazza
e Please sign up for CS4110, not CS 5110!

Monday is Labor Day!

e Homework #1 deadline = Tuesday, September 4th

e My office hours next week = Tuesday at 1:30-2:30pm
e Raghu’s office hours next week = Tuesday at 5-6pm

Arithmetic Expressions

Last time we defined a simple language of arithmetic expressions:

ex=x|nle+e e xe|x:=e; e

Arithmetic Expressions

Last time we defined a simple language of arithmetic expressions:
ex=x|nle+e e xe|x:=e; e

Example

Assuming o is a store that maps foo to 4.

o(foo) = 4
(o,fo0) — (0,4)
(o,fo0+2) — (0,4+2)
(o, (foo+2)* (bar+1)) — (o, (4+2)*(bar+1))

Var
LAdd

LMul

Properties

Today we'll prove some useful program properties by induction.

Properties

-___
Today we'll prove some useful program properties by induction.

e Determinism: every configuration has at most one successor

Ve € Exp. Vo, o', 0" € Store. Ve', ¢” € Exp.
if (0,e) — (0’,€¢) and (o,e) — (0", ¢")
thene’ = ¢’ and o’ = o”.

Properties

-___
Today we'll prove some useful program properties by induction.

e Determinism: every configuration has at most one successor
Ve € Exp. Vo, o', 0" € Store. Ve', ¢” € Exp.

if (0,e) — (0’,€¢) and (o,e) — (0", ¢")
thene’ = ¢’ and o’ = o”.

e Termination: evaluation of every expression terminates,

Ve € Exp. Vo € Store. 3o’ € Store. 3¢’ € Exp.
(0,€) —* (o', €') and (¢, €') /=,

where (o', €’y /— is shorthand for
—(Jo” € Store. 3" € Exp. (o',¢') — (0”,€")).

Soundness

It is tempting to try to prove the following property.

e Soundness: evaluation of every expression yields an integer,

Ve € Exp. Vo € Store. do’ € store. In’ € Int.
(o,€) —* (o', 1),

But unfortunately it is not true!

Soundness

It is tempting to try to prove the following property.

e Soundness: evaluation of every expression yields an integer,

Ve € Exp. Vo € Store. do’ € store. In’ € Int.
(o,€) —* (o', 1),

But unfortunately it is not true!

Counterexample
If o is the undefined function, then (o, x) #/—.

Soundness

It is tempting to try to prove the following property.

e Soundness: evaluation of every expression yields an integer,

Ve € Exp. Vo € Store. do’ € store. In’ € Int.
(o,€) —* (o', 1),

But unfortunately it is not true!

Counterexample
If o is the undefined function, then (o, x) #/—.

In generally, evaluation of an expression can “get stuck”.

Well-Formedness

Idea: restrict our attention to well-formed configurations (o, e),
where ¢ is defined on (at least) the free variables in e.

Well-Formedness

Idea: restrict our attention to well-formed configurations (o, e),
where ¢ is defined on (at least) the free variables in e.

Free Variables

fis() = {x}

Well-Formedness

Idea: restrict our attention to well-formed configurations (o, e),
where ¢ is defined on (at least) the free variables in e.

Free Variables

fvs(x)
fvs(n)

{x}
{

> 11>

Well-Formedness

Idea: restrict our attention to well-formed configurations (o, e),
where ¢ is defined on (at least) the free variables in e.

Free Variables

fus(x) = {x}
fis(n) = {}
fus(ey+e;) = fus(er) Ufvs(ey)

Well-Formedness

Idea: restrict our attention to well-formed configurations (o, e),
where ¢ is defined on (at least) the free variables in e.

Free Variables

{x}

{}

fvs(er) U fus(e)
fvs(er) U fus(ey)

> f1> > 11>

Well-Formedness

Idea: restrict our attention to well-formed configurations (o, e),
where ¢ is defined on (at least) the free variables in e.

Free Variables

fis(x) = {x}
fis(n) = {}
fus(ey+e;) = fus(er) Ufvs(ey)
fus(er xey) 2 fus(er) U fvs(ey)
frs(x:=er;) = fus(er) U (frs(ea) \ {x})

Well-Formedness

Idea: restrict our attention to well-formed configurations (o, e),
where ¢ is defined on (at least) the free variables in e.

Free Variables

fis(x) = {x}
fis(n) = {}
fus(ey+e;) = fus(er) Ufvs(ey)
fus(er xey) 2 fus(er) U fvs(ey)
frs(x:=er;) = fus(er) U (frs(ea) \ {x})

Well-Formedness
A configuration (o, e) is well-formed if and only if fs(e) C dom(o).

Progress and Preservation

Now we can formulate two properties that imply soundness:
e Progress
Ve € Exp. Vo € Store.

(o,e) well-formed —
e € Intor (3¢ € Exp. 3o’ € Store. (0,e) — (0',€'))

Progress and Preservation

Now we can formulate two properties that imply soundness:
e Progress
Ve € Exp. Vo € Store.

(o,e) well-formed —
e € Intor (3¢ € Exp. 3o’ € Store. (0,e) — (0',€'))

e Preservation

Ve, e’ € Exp. Vo, o’ € Store.
(0,€) well-formed and (o,e) — (0’,€¢/) =
(o', €'y well-formed.

Progress and Preservation

Now we can formulate two properties that imply soundness:

e Progress

Ve € Exp. Vo € Store.
(o,e) well-formed —
e € Intor (3¢ € Exp. 3o’ € Store. (0,e) — (0',€'))

e Preservation

Ve, e’ € Exp. Vo, o’ € Store.
(0,€) well-formed and (o,e) — (0’,€¢/) =
(o', €'y well-formed.

How are we going to prove these properties? Induction!

Inductive Sets

Inductive Sets

An inductively-defined set A is one that can be described using a
finite collection of inference rules:

a €A a, € A
aeA

This rules states that if a; through a,, are elements of A, then ais
also an element of A.

An inference rule with no premises is often called an axiom.

The set A is the smallest set “closed” under these axioms and rules.

Inductive Set Examples

The natural numbers are an inductive set.

neN

0eN succ(n) € N

Inductive Set Examples

Every BNF grammar defines an inductive set.

ex=x|nle+e |exe|x:=e; e

can be equivalently defined as:

x € Exp n € Exp
e € Exp e, € Exp e € Exp e, € Exp
e;+e, € Exp e xe, € Exp

e; € Exp e, € Exp
X:=e;; e € Exp

Inductive Set Examples

The small-step evaluation relation — is an inductive set.

n=009 gy

(o,x) = (o, n)

(o,e1) = (o', €1) LAdd (0,€2) = (0, €}) RAdd
(o,e1+e) — (0, e +e)) (o,n+e) = (o’ n+eb)
=m+n (o,e1) = (o’ e7)
_ LMul
o) < (o 1O Gerre) & (@ dren

(g,0) = (o', €)) RMul

(o,n*xey) — (o',n*e))

p=mxn

Mul

(g,m*n) = (0, p)

(o,01) = (o', €}) o' =ox~n]
/

Assgn

(o,x:=e1; &) — (o', x:=¢};

A 1
o A\ssan

(o,x:=n; &) — {0, e)

Inductive Set Examples

The multi-step evaluation relation is an inductive set.

Refl

(o,€) —*(0,e)

Inductive Set Examples

The set of free variables of an expression is an inductive set.

y € fvs(e) y € fvs(ey)
y € fus(y) y € fus(e; +ey) y € fus(e; +ey)
y € fvs(e) y € fvs(ey) y € fvs(er)
y € fvs(er x e;) y € fus(e * ey) yefvs(x:=er;)

y# X y € fvs(ey)
yefvs(x:=ep;)

Induction Principle

Recall the principle of mathematical induction.

To prove Vn. P(n), we must establish several cases.

e Base case: P(0)

e Inductive case: P(m) = P(m + 1)

Induction Principle

Every inductive set has an analogous principle.

To prove Va. P(a) we must establish several cases.

e Base cases: P(a) holds for each axiom

acA

e |nductive cases: For each inference rule

a €A ... a, €A
aeA

if P(a;) and ... and P(a,) then P(a)

Example: Progress

Recall the progress property.

Ve € Exp. Vo € Store.
(0,e) well-formed —>
e € Intor (3¢ € Exp. 3o’ € Store. (0,e) — (0, €'))

We'll prove this by structural induction on e.

x € Exp n € Exp
e € Exp e, € Exp e € Exp e, € Exp
e +e, € Exp e;xe, € Exp

e; € Exp e, € Exp

X:=e;; e € Exp

Z

