
.

. .
CS 4110 – Programming Languages and Logics
Lectures #33: Concurrency

.

Based on material by Stephen Chong, Greg Morrisett, Andrew Myers, George Necula, and Radu Rugina

All of the languages we have seen so far in this course have been sequential, performing one step of
computation at a time. In the next few lectures we will consider languages where multiple threads of
execution may be interleaved simultaneously.

1 IMP with Parallel Composition

As a rst step, let’s add a parallel composition command c1 || c2 to IMP,

a ::= x | n | a1 + a2
b ::= true | false | a1 < a2

c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c | ..c1 || c2 ,

and extend the small-step operational semantics with the following rules for c1 || c2, which interleave the
execution of c1 and c2:

⟨σ, c1⟩ → ⟨σ′, c′1⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c′1 || c2⟩

⟨σ, c2⟩ → ⟨σ.′c′2⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c1 || c′2⟩ ⟨σ, skip || skip⟩ → ⟨σ, skip⟩

Note that the rules for parallel compositions c1 || c2 allow either sub-command to take a step. In particular,
the two sub-commands can interleave read and write operations involving the same store. This models a
simple form of shared memory parallelism.

2 Communicating Sequential Processes

In the 1970s, TonyHoare (and others) correctly observed that in the future, computers would havemultiple
computing cores, but each would have its own independent store. Hoare’s Communicating Sequential
Processes were an early and highly-in uential language that capture amessage passing form of concurrency.
Many languages have built on CSP including Milner’s CCS and π-calculus, Petri nets, and so on.

CSP is organized around several new constructs for communicating information between processes.
We assume a xed collection of channels

α, β, γ ∈ Channels

and addnewconstructsα ! a for sending andα?x for receivingmessages on channels. Intuitively, if one part
of a process sends a value on a channel and another process iswaiting to receive, the twowill interact and the
valuewill be transmitted fromone to the other. We also add a restriction operation c\α that allows a process
c to hide a channel α. This is useful for encoding internal communication within a process. Finally, we add
guards to the language. These are based on a language construct due to Dijkstra. Intuitively, a guarded
command b → c can “ re” to c if b is true and a composition of guards g1 [] g2 can non-deterministically
“ re” to any of the commands in g1 or g2 whose boolean guard evaluates to true.

1

2.1 Syntax

The syntax of CSP is as follows. (This presentation is a slight simpli cation of the language given inWinskel,
Chapter 14.)

b ::= ... boolean expressions

a ::= ... arithmetic expressions

c ::= skip skip
| x := a assignment
| α?x receive
| α ! a send
| c\α restriction
| c1 || c2 parallel composition
| c1; c2 sequential composition
| if g guarded conditional
| do g od guarded loop

g ::= b → c command guard
| b ∧ α?x → c receive guard
| b ∧ α ! a → c send guard
| g1 [] g2 guard composition

To ensure that all communication between processes happens via sends and receives and not via shared
memory we assume a simple well-formedness condition: in every composition c1 || c2, the set of locations
referenced in c1 and c2 must be disjoint.

2.2 Operational Semantics for Commands

We formalize the operational semantics of CSPusing a small-step transition relation between con gurations
of the form ⟨σ, c⟩. To keep track of the sends and receives performed by processes, we annotate the arrow

with a label λ, writing ⟨σ, c⟩ λ→ ⟨σ′, c′⟩ to indicate that the transition has an observable event λ. The syntax
of labels λ is given by the following grammar:

λ ::= ϵ | α !n | α?n

By convention we omit the label if it is ϵ, writing ⟨σ, c⟩ → ⟨σ′, c′⟩ instead of ⟨σ, c⟩ ϵ→ ⟨σ′, c′⟩.
The operational semantics rules are given by the axioms and rules below. The most important rules are

for the parallel composition of a send and receive, which allows two processes to communicate a value over
a channel. Some of the rules use the standard large-step semantics for arithmetic and boolean expressions
in IMP. Others use an auxiliary relation that captures the small-step semantics for guards, which is de ned
below.

⟨σ, a⟩ ⇓ n

⟨σ, x := a⟩ → ⟨σ[x 7→ n], skip⟩

⟨σ, α?x⟩ α?n→ ⟨σ[x 7→ n], skip⟩
⟨σ, a⟩ ⇓ n

⟨σ, α ! a⟩ α !n→ ⟨σ, skip⟩

2

⟨σ, c1⟩
λ→ ⟨σ, c′1⟩

⟨σ, c1; c2⟩
λ→ ⟨σ, c′1; c2⟩ ⟨σ, skip; c2⟩ → ⟨σ, c2⟩

⟨σ, g⟩ λ ⟨σ′, c⟩
⟨σ, if g ⟩ λ→ ⟨σ′, c⟩

⟨σ, g⟩ λ ⟨σ′, c⟩
⟨σ, do g od⟩ λ→ ⟨σ′, c; do g od⟩

⟨σ, g⟩ fail

⟨σ, do g od⟩ → ⟨σ, skip⟩

⟨σ, c1⟩
λ→ ⟨σ′, c′1⟩

⟨σ, c1 || c2⟩
λ→ ⟨σ′, c′1 || c2⟩

⟨σ, c2⟩
λ→ ⟨σ′, c′2⟩

⟨σ, c1 || c2⟩
λ→ ⟨σ′, c1 || c′2⟩ ⟨σ, skip || skip⟩ → ⟨σ, skip⟩

⟨σ, c1⟩
α?n→ ⟨σ′, c′1⟩ ⟨σ, c2⟩

α !n→ ⟨σ, c′2⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c′1 || c′2⟩

⟨σ, c1⟩
α !n→ ⟨σ, c′1⟩ ⟨σ, c2⟩

α?n→ ⟨σ′, c′2⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c′1 || c′2⟩

⟨σ, c⟩ λ→ ⟨σ′, c′⟩
⟨σ, c\α⟩ λ→ ⟨σ′, c′\α⟩

λ ̸= α?n and λ ̸= α !n
⟨σ, skip\α⟩ → ⟨σ, skip⟩

3 Operational Semantics for Guards

The small-step operational semantics for guards, written ⟨σ, c⟩ λ ⟨σ′, c′⟩ or ⟨σ, c⟩ λ fail, is a binary
relation from con gurations to con gurations or the special value fail. It non-deterministically evaluates a
guarded command to a con guration ⟨σ, c⟩ if the boolean expression b in one of its sub-guards of the form
b → c or b ∧ α ! a → c or b ∧ α?x → c evaluates to true, and produces fail if no such sub-guard can be
found.

⟨σ, b⟩ ⇓ true

⟨σ, b → c⟩ ⟨σ, c⟩
⟨σ, b⟩ ⇓ false

⟨σ, b → c⟩ fail

⟨σ, b⟩ ⇓ true

⟨σ, b ∧ α?x → c⟩ α?n ⟨σ[x 7→ n], c⟩
⟨σ, b⟩ ⇓ false

⟨σ, b ∧ α?x → c⟩ fail

⟨σ, b⟩ ⇓ true ⟨σ, a⟩ ⇓ n

⟨σ, b ∧ α ! a → c⟩ α !n ⟨σ, c⟩
⟨σ, b⟩ ⇓ false

⟨σ, b ∧ α ! a → c⟩ fail

⟨σ, g1⟩
λ ⟨σ′, c⟩

⟨σ, g1 [] g2⟩
λ ⟨σ′, c⟩

⟨σ, g2⟩
λ ⟨σ′, c⟩

⟨σ, g1 [] g2⟩
λ ⟨σ′, c⟩

⟨σ, g1⟩ fail ⟨σ, g2⟩ fail

⟨σ, g1 [] g2⟩
λ fail

3.1 Examples

To get a taste for programming in CSP, let us consider a few examples.

3

1. Here is a simple process that computes the max of two variables and sends it on a channel m:

if (x ≤ y → m ! y) [] (y ≤ x → m !x)

Note that the two tests, which overlap, could be evaluated in parallel on an appropriate machine.

2. Now consider a process that repeatedly receives a value on α and transmits it on β:

do (true ∧ α?x → β !x) od

This implements a buffer of size one. This is useful as communication in CSP is synchronous. Using
this buffer, a process that needs to send a value onα can continuewithoutwaiting for another process
to receive it.

3. The next example illustrates a process that implements a buffer of size two:

(do (true ∧ α?x → β !x) od || do (true ∧ β?y → γ ! y) od)\β

Note the use of restriction to hide the internal channel β.

4. Next consider the following two processes:

if (true ∧ α?x → c1) [] (true ∧ β?x → c2)

if (true → α?x; c1) [] (true → β?x; c2)

These processes appear similar but they behave quite differently. Why?

5. Here is a process that merges two channels α and β onto a single channel γ:

do (true ∧ α?x → γ !x) [] (true ∧ β?x → γ !x) od

6. This process lters a channel α, only preserving the positive values:

do

true ∧ α?x →
if (x > 0 → β !x) [] (x ≤ 0 → skip)

od

7. Here is a process that implements a division operator:

do

true ∧ in?x →
true ∧ in?y →

q := 0;
r := x;
do (r ≥ y →

r := r − y;
q := q + 1)

od;
out ! q;
out ! r

od

4

8. What does this process do? (Hint: it’s like the buffer we saw before but...)

do true ∧ α?x →
(β !x → α?x → skip)

od

9. What about this one?
do

true ∧ α?x →
do

true ∧ α?y →
β !x → x := y

od

od

10. As a nal example, here is a simple encoding of Dijkstra’s dining philosophers in CSP (note this is
not a solution—it can easily deadlock!):

phil i = get i ! i; get (i+1)%n ! i;nom ! i; put i ! i; put (i+1)%n ! i

fork i = do (true ∧ get i?x → put i?x) od

eat = do (true ∧ nom?x → skip) od

phil0 || phil1 || phil2 || phil3 || phil4 || fork0 || fork1 || fork2 || fork3 || fork4 || eat

5

