
.

. .
CS 4110 – Programming Languages and Logics
Lecture #27: Featherweight Java

.

One way to model the features of an object-oriented languages is to encode it using standard type
structure. This leads to so-called object encodings. A different (and arguably simpler) way is to model
these features directly. This lecture considers a core calculus for Java developed by Igarashi, Pierce, and
Wadler called Featherweight Java.

Featherweight Java is small by design. It reduces Java to its essential features including classes, in-
heritance, constructors, àelds, methods, and casts, and omits everything else. In particular, the language
does not include interfaces, assignment, concurrency, overloading, exceptions, or the public, private,
and protected modiàers. Because the language is so simple, its proof of type soundness is short. It is also
easy to extend—indeed, in the original paper on Featherweight Java, the authors present an extension with
parametric polymorphism (i.e., generics).

1 Featherweight Java

The syntax of Featherweight Java is given by the following grammar.

P ::= CL e programs

CL ::= class C extends C {C f ; K M} classes

K ::= C(C f) {super(f); this.f = f ; } constructors

M ::= C m(C x){return e} methods

e ::= x expressions
| e.f
| e.m(e)
| new C(e)
| (C) e

v ::= new C(v) values

E ::= [·] evaluation contexts
| E.f
| E.m(e)
| v.m(v,E, e)
| new C(v,E, e)
| (C) E

We will use the notation e to denote sequences of the form e1, . . . , ek (and C f for C1 f1, . . . , Ck fk). By
convention, metavariables B, C , andD range over class names,m ranges over method names, and f and
g range over àeld names. As usual, x ranges over variables. Note that the syntax of Featherweight Java is

1

a strict subset of Java. This means that every Featherweight Java program can be executed using a stock
Java compiler and virtual machine.

At the top level, programs consist of a list of classes and a distinguished “main” expression. Wewill use
the notationP (C) to denote the deànition of the classC in the program. A class has a name, a superclass, a
list of àelds (instance variables), a constructor, and a list ofmethods. A constructor takes a list of arguments,
invokes the super(...) constructor, and then initializes its àelds. A method takes a list of arguments and
returns a single expression—a variable, àeld projection, method invocation, constructor call, or cast.

Although this language is simple, we can still write many useful programs (in fact, all useful pro-
grams—the language is Turing complete). Here is a simple example that illustrates how we can represent
pairs in Featherweight Java:

class A extends Object {
A() { super(); }

}

class B extends Object {
B() { super(); }

}

class Pair extends Object {
Object fst;
Object snd;

Pair(Object fst, Object snd) {
super();
this.fst = fst;
this.snd = snd;

}

Pair swap Object() {
return new Pair(this.snd, this.fst);

}
}

Using the small-step operational semantics described later in this lecture, it will be possible to evaluate the
expression

new Pair(new A(), new B()).swap()

to the following:

new Pair(new B(), new A())

Note that because the language does not include assignment (except in constructors), Featherweight Java
programs must be written in a functional style, constructing new objects instead of mutating old ones.

As another example, consider what happens when we evaluate the following expression:

(A) new B()

Because B is not declared to be a subtype of A, the cast fails. In the full Java language, the virtual machine
would raise an exception. In Featherweight Java, we model this instead as a stuck term.

2

2 Subtype Relation

The subtype relation is the reáexive and transitive closure of the binary relation between classes and su-
perclasses. Formally it is deàned using the following axioms and inference rules:

S-R
C ≤ C

S-T
C ≤ D D ≤ E

C ≤ E

S-C
P (C) = class C extends D {C f ; K M}

C ≤ D

Note that Featherweight Java subtyping is nominal, just like Java—the objects generated by a class are a
subtype of the objects generated by its superclass.

3 Auxiliary Functions

Before we present the operational semantics for Featherweight Java, let us deàne a few auxiliary functions
for looking up the methods and àelds of classes.

Field Lookup The set of àelds deàned in a class is simply the list of all àelds in the deànition of the class
in the program, as well as the àelds of its superclass.

F-O
àelds(Object) = []

F-C
P (C) = class C extends D {C f ; K M} àelds(D) = D g

àelds(C) = D g @ C f

Method Body Lookup Similarly, to lookup the body of a method we either read it off from the class
deànition, or take the method body of the superclass. Note that the structure returned includes both the
arguments x and the body of the method e.

MB-C

P (C) = class C extends D {C f ; K M}
B m (B x) {return e} ∈ M

mbody(m,C) = (x, e)

MB-S

P (C) = class C extends D {C f ; K M}
B m (B x) {return e} ̸∈ M

mbody(m,C) = mbody(m,D)

4 Operational Semantics

The operational semantics for Featherweight Java is deàned in the usual way, using small-step operational
semantics rules and evaluation contexts. It uses a call-by-value evaluation strategy.

3

E-C
e → e′

E[e] → E[e′]

E-P
àelds(C) = C f

new C(v).fi → vi

E-I
mbody(m,C) = (x, e)

new C(v).m(u) → [x 7→ u, this 7→ new C(v)]e

E-C
C ≤ D

(D) new C(v) → new C(v)

Note that the rule for method invocation steps to the body of the method with the actual arguments substi-
tuted for the formal parameters and the object that the method is being invoked on, new C (v), substituted
for this. Also note that in the cast rule, the target type of the cast D must be a supertype of the object
new C(v) being cast—i.e., an upcast simply strips off the cast while downcasts and casts between unre-
lated classes get stuck.

5 Type System

The type system for Featherweight Java has three main pieces (and several auxiliary deànitions). The àrst
is the typing relation for expressions, which is a three-place relation Γ ⊢ e : C between a context Γ that
maps variables to their types, an expression e, and a type C .

Method Type Lookup The typing relation for expressions relies on an auxiliary deànition that calculates
method types. To calculate the type of a method m in a class C we either look it up from the class deànition,
or take the type of the method in its superclass.

MT-C

P (C) = class C extends D {C f ; K M}
B m (B x) {return e} ∈ M

mtype(m,C) = B → B

MT-S

P (C) = class C extends D {C f ; K M}
B m (B x) {return e} ̸∈ M

mtype(m,C) = mtype(m,D)

Expression Typing With this auxiliary deànition in hand, we are ready to deàne the typing relation for
expressions:

T-V
Γ(x) = C

Γ ⊢ x : C

T-F
Γ ⊢ e : C àelds(C) = C f

Γ ⊢ e.fi : Ci

4

T-I

Γ ⊢ e : C mtype(m,C) = B → B

Γ ⊢ e : A A ≤ B

Γ ⊢ e.m(e) : B

T-N
àelds(C) = C f Γ ⊢ e : B B ≤ C

Γ ⊢ new C(e) : C

T-UC
Γ ⊢ e : D D ≤ C

Γ ⊢ (C) e : C

T-DC
Γ ⊢ e : D C ≤ D C ̸= D

Γ ⊢ (C) e : C

T-SC

Γ ⊢ e : D C ̸≤ D D ̸≤ C

stupid warning

Γ ⊢ (C) e : C

Note that it includes three typing rules for casts—one for upcasts, another for downcasts, and another for
“stupid” casts between unrelated types. Stupid casts are not allowed by the standard Java typechecker but
are needed to prove preservation.

Method Typing The next deànition is a two place relation that checks that a method m is “okay” in a class
C. It uses an auxiliary deànition override that checks that a method validly overrides any methods with the
same name deàned by its superclass.

O
mtype(m,D) = A → A implies A = B and A = B

override(m,D,B → B)

M-OK

x : B, this : C ⊢ e : A A ≤ B

P (C) = class C extends D {C f ; K M}
override(m,D,B → B)

B m(B x){return e} OK in C

Class Typing The ànal piece of the type system checks that a class is “okay”.

C-OK

K = C(D g,C f) {super(g); this.f = f ; }
àelds(D) = D g M OK in C

class C extends D {C f ; K M} OK

To typecheck awhole program, we check that every class is okay, and that themain expression iswell-typed
under the empty context.

5

