
.

. .
CS 4110 – Programming Languages and Logics
Lecture #18: Compiling with Continuations

.

Because continuations expose control explicitly, they make a good intermediate language for compi-
lation—control is exposed explicitly in machine code as well. We can show this by writing a translation
from a full-featured functional language down to an assembly-like language. This translation will give us
a fairly complete recipe for compiling any of the language features we have discussed over the past few
lectures all the way down to hardware.

1 Source language

Our source language looks like the lambda calculus with tuples and numbers. We assume the standard
call-by-value semantics.

e ::= n | x | λx. e | e1 e2 | (e1, e2) | #i e | e1 + e2

The target language looks like a simple assembly language:

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x

c ::= mov x1, x2

| mov x, n

| mov x, lb

| add x1, x2, x3

| load x1, x2[n]

| store x1, x2[n]

| malloc n

A program p consists of a series of basic blocks bb, each with a distinct label lb. Each basic block con-
tains a sequence of commands c and ends with a jump instruction. Commands correspond to assembly
language instructions and are largely self-evident; the only one that is high-level is the malloc instruction,
which allocates nwords of space and places the address of the space into a special register r0. (This can be
implemented as simply as add r0, r0, −n if we are not worried about garbage.)

The jump instruction is an indirect jump. It makes the program counter take the value of the argument
register: essentially, jump x acts like mov pc, x.

2 Intermediate language #1

The àrst intermediate language, IL1, is in continuation-passing style:

1

v ::= n | x | λx. λk. c | halt | λx.c
e ::= v | v1 + v2 | (v1, v2) | (#i v)

c ::= let x = e in c

| v1 v2 v3

| v1 v2

There are a few things to note about the intermediate language:

• Lambda abstractions corresponding to continuations are marked with a underline. These are con-
sidered administrative lambdas that we will eliminate at compile time, either by reducing them or by
converting them to real lambdas.

• There are no subexpressions in the language (e does not occur in its own deànition).

• Commands c look like basic blocks:

let x1 = e1 in
let x2 = e2 in
. . .

let xn = en in
v0 v1 v2

• Lambdas are not closed and can occur inside other lambdas.

The contract of the translation is that [[e]]k will evaluate e and pass its result to the continuation k. To
translate an entire program, we use k = halt, where halt is the continuation to send the result of the entire
program to. Here is the translation from the source to the àrst intermediate language:

[[x]] k = k x

[[n]] k = k n

[[(e1 + e2)]] k = [[e1]]
(
λx1.[[e2]](λx2. let z = x1 + x2 in k z)

)
[[(e1, e2)]] k = [[e1]]

(
λx1.[[e2]]

(
λx2. let t = (x1, x2) in k t

))
[[#i e]] k = [[e]](λt. let y = #i t in k y)

[[λx. e]] k = k (λx. λk′. [[e]] k′)

[[e1 e2]] k = [[e1]]
(
λf.[[e2]]

(
λv.f v k

))

2

Let’s see an example. We translate the expression [[(λa.#1 a) (3, 4)]] k, using k = halt.

[[(λa.#1 a) (3, 4)]] k

= [[λa.#1 a]] (λf. [[(3, 4)]](λv. f v k))

= (λf. [[(3, 4)]](λv. f v k)) (λa. λk′. [[#1 a]] k′)

= (λf. [[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv. f v k) b)

)
(λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3) (λa. λk′. [[#1 a]] k′)

= (λf.
(
λx1. (λx2. let b = (x1, x2) in (λv. f v k) b) 4

)
3) (λa. λk′. [[a]](λt. let y = #1 t in k′ t))

Clearly, the translation generates a lot of administrative lambdas, which will be quite expensive if they
are compiled into machine code. To make the code more efàcient and compact, we will optimize it using
some simple rewriting rules to eliminate administrative lambdas. We can eliminate unnecessary applica-
tion to a variable, by copy propagation:

(λx.e) y → e{y/x}

Other unnecessary administrative lambdas can be converted into lets:

(λx.c)v → let x = v in c

We can also perform administrative η-reductions:

λx.k x → k

If we apply these rules to the expression above, we get

let f = λ a. λ k′. let y = #1 a in k′ y in
let x1 = 3 in
let x2 = 4 in
let b = (x1, x2) in
f b k

This is starting to look a lot more like our target language.
The idea of separating administrative terms from real terms and performing a compile-time simpliàca-

tion—often known as partial evaluation—is powerful and can be used inmany other contexts. Here, it allows
us to write a very simple CPS conversion that treats all continuations uniformly, and perform a number
of control optimizations. Note that we may not be able to remove all administrative lambdas. Any that
cannot be eliminated using the rules above are converted into real lambdas.

3 Intermediate Language #1→ Intermediate Language #2

The next step is the translation from IL1 to IL2. In this intermediate language, all lambdas are at the top
level, with no nesting:

3

P ::= let xf = λx1. . . . λxn. λk. c in P

| let xc = λx1. . . . λxn. c in P

| c
c ::= let x = e in c | x1 x2 . . . xn
e ::= n | x | halt | x1 + x2 | (x1, x2) | #i x

The key idea behind the translation from IL1 to IL2 is to “lift” all lambdas up to the top level while
preserving lexical scope. More speciàcally, this translation requires the construction of closures that capture
the free variables of the lambda abstractions. This translation is known as closure conversion.

The main part of the translation is captured by the following:

[[λx. λk. c]] σ = let (c′, σ′) = [[c]] σ in
let y1, . . . , yn = fvs(λx. λk. c′) in
(f y1 . . . yn, σ

′[f 7→ λy1. . . . λyn. λx. λk. c
′])where f fresh

The translation takes an expression possibly containing nested lambdas and an environment σ mapping
variables to lambdas. It produces a lambda-free expression and an extended environment. Intuitively, the
environment collects up the functions that must be lifted to the top level of the program. The translation of
λx. λk. c in the deànition above àrst translates the body c, then creates a new function f parameterized on
x as well as the free variables y1 to yn of the translated body. It then adds f to the environment σ replaces
the entire lambda with (f yn . . . yn). Overall, this has the effect of eliminating all nested lambdas.

4 Intermediate Language #2→ Assembly

The ànal translation from IL2 to assembly is given in Figure 1. Note that ra is the name of the dedicated
register that holds the return address. In addition, we assume an inànite supply of registers. We need to
do register allocation and possibly spill registers to a stack to obtain working code.

Finally, note that while this translation is very simple, it is not particularly efàcient. For example, we
are doing a lot of register moves when calling functions and when starting the function body, which could
be optimized.

4

P[[c]] = main : C[[c]];
halt :

P[[let xf = λx1. . . . λxn. λk. c in p]] = xf : mov x1, a1;

...

mov xn, an;

mov k, ra;

C[[c]];
P[[p]]

P[[let xc = λx1. . . . λxn. c in p]] = xc : mov x1, a1;

...

mov xn, an;

C[[c]];
P[[p]]

C[[let x1 = x2 in c]] = mov x1, x2; C[[c]]
C[[let x = x1 + x2 in c]] = add x1, x2, x;

C[[c]]
C[[let x = (x1, x2) in c]] = malloc 2;

mov x, r0;

store x1, x[0];

store xn, x[1];

C[[c]]
C[[let x = #i x1 in c]] = load x, x1[n];

C[[c]]
C[[x k x1 . . . xn]] = mov a1, x1;

...

mov an, xn;

mov ra, k;

jump x

Figure 1: Compilation to assembly.

5

