
.

. .
CS 4110 – Programming Languages and Logics
Lectures #17: Adequacy and Continuation-Passing Style

.

In the last lecture, we saw several examples of deàning language features by deànitional translation.
This lecture presents two additional examples, discusses the correctness of these translations, and presents
continuations.

1 Laziness

We’ve seen semantics for both the call-by-name λ-calculus and the call-by-value λ-calculus. We can trans-
late a call-by-name program into a call-by-value program. In CBV, arguments to functions are evaluated
before the function is applied; in CBN, functions are applied as soon as possible. In the translation, we
delay the evaluation of arguments by wrapping them in a function. This is called a thunk: wrapping a
computation in a function to delay its evaluation.

Since arguments to functions are turned into thunks, when we want to use an argument in a function
body, we need to evaluate the thunk. We do so by applying the thunk (which is simply a function); it
doesn’t matter what we apply the thunk to, since the thunk’s argument is never used.

T [[x]] = x (λy. y)

T [[λx. e]] = λx. T [[e]]

T [[e1 e2]] = T [[e1]] (λz. T [[e2]]) z is not a free variable of e2

2 References

We introduce constructs for creating, reading, and updating memory locations, also called references. The
resulting language is still a functional language (since functions are àrst-class values), but expressions can
have side-effects, that is, they can modify state.

The syntax is deàned as follows.

e ::= x | λx. e | e0 e1 | ref e | !e | e1 := e2 | ℓ
v ::= λx. e | ℓ

Expression ref e creates a new memory location (like a malloc), and sets the initial contents of the lo-
cation to (the result of) e. The expression ref e itself evaluates to a memory location ℓ. Think of a location
as being like a pointer to a memory address. The expression !e assumes that e evaluates to a memory loca-
tion, and !e evaluates to the current contents of the memory location. Expression e1 := e2 assumes that e1
evaluates to a memory location ℓ, and updates the contents of ℓ with (the result of) e2. Locations ℓ are not
intended to be used directly by a programmer: they are not part of the surface syntax of the language, the
syntax that a programmer would write. They are introduced only by the operational semantics.

1

We deàne a small-step CBV operational semantics. We use conàgurations ⟨σ, e⟩, where e is an expres-
sion, and σ is a map from locations to values.

E ::= [·] | E e | v E | ref E | !E | E := e | v := E

⟨σ, e⟩ → ⟨σ′, e′⟩
⟨σ,E[e]⟩ → ⟨σ′, E[e′]⟩

β-
⟨σ, (λx. e) v⟩ → ⟨σ, e{v/x}⟩

A
⟨σ, ref v⟩ → ⟨σ[ℓ 7→ v], ℓ⟩

ℓ ̸∈ dom(σ)

D
⟨σ, !ℓ⟩ → ⟨σ, v⟩

σ(ℓ) = v A
⟨σ, ℓ := v⟩ → ⟨σ[ℓ 7→ v], v⟩

References do not add any expressive power to the λ-calculus: it is possible to translate λ-calculus
with references to the pure λ-calculus. Intuitively, this is achieved by explicitly representing the store, and
threading the store through the evaluation of the program. The details are left as an exercise.

3 Adequacy of translation

In each case, we had a semantics deàned for both the source and target language. We would like the
translation to be correct, that is, to preserve the meaning of source programs.

More precisely, we would like an expression e in the source language to evaluate to a value v if and
only if the translation of e evaluates to a value v′ such that v′ is “equal to” v. What exactly it means for v′

to be “equal to” v will depend on the translation. Sometimes, it will mean that v′ is the translation of v;
other times, it will mean that v′ is somehow equivalent to the translation of v. In particular, there are many
ways to deàne equivalences on functions. One way is to say that two functions are equivalent if they agree
on the result when applied to any value of a base type (e.g., integers or booleans). The idea is that if two
functions disagree when passed a more complex value (say, a function), then we could write a program
that uses these functions to produce functions that disagree on values of base types.

There are two criteria for a translation to be adequate: soundness and completeness. For clarity, let’s
suppose that Expsrc is the set of source language expressions, and that →src and →trg are the evaluation
relations for the source and target languages respectively. A translation is sound if every target evaluation
represents a source evaluation:

Soundness: ∀e ∈ Expsrc. if T [[e]] →∗
trg v

′ then ∃v. e →∗
src v and v′ equivalent to v

A translation is complete if every source evaluation has a target evaluation.

Completeness: ∀e ∈ Expsrc. if e →∗
src v then ∃v′. T [[e]] →∗

trg v
′ and v′ equivalent to v

4 Continuations

So far we have seen a number of language features that extend lambda calculus, and have translated many
of these into the pure lambda calculus, using a direct semantic translation. That is, the control structure of
the source language translated into the corresponding control structure in the target language:

T [[λx. e]] = λx. T [[e]]

T [[e1 e2]] = T [[e1]] T [[e2]]

2

This style of translation works well when the source language is similar to the target language. However,
when the control structures of the source and target languages differ considerable, it doesn’t work as well.

Continuations are a programming technique that may be used directly by a programmer, or used in
program transformations by a compiler. Because they make the control áow of the program explicit, they
can be used to overcome discrepancies between source and target languages in deànitional translation.
They can also be used to deàne the semantics of control-áow constructs such as exceptions.

Intuitively, a continuation represents “the rest of the program.” Consider the program

if foo < 10 then 32 + 6 else 7 + bar

and consider the evaluation of the expression foo < 10. When we ànish evaluating this subexpression, we
will evaluate the if statement, and then evaluate the appropriate branch. The continuation of the subexpres-
sion foo < 10 is the rest of the computation that will occur after we evaluate the subexpression. We can
write this continuation as a function that takes the result of the subexpression:

(λy. if y then 32 + 6 else 7 + bar) (foo < 10)

The evaluation order and result of this program will be the same as the original expression; the difference
is that we extracted the continuation of the subexpression in to a function.

The nice thing about continuations is that it makes the control explicit, and this is especially useful in
the case of functional programs, where control is not explicit otherwise. In fact, we can rewrite a program
to make continuations more explicit. Let’s consider another program, and convert it so that continuations
are explicit. Let’s think about the following applied λ-calculus program.

(λx. x) ((1 + 2) + 3) + 4

We’ll start by deàning a continuation for the outermost evaluation context, which takes a value, and applies
the identity function to it.

k0 = λv. (λx. x) v

The evaluation context that is evaluated next-to-last takes a value, adds 4 to it, and then passes the result
to k0.

k1 = λa. k0 (a+ 4)

Likewise, for the next evaluation contexts.

k2 = λb. k1 (b+ 3)

k3 = λc. k2 (c+ 2)

The program itself is now equivalent to k3 1. Since let x = e in e′ is just syntactic sugar for (λx. e′) e, we
can actually rewrite the above as

let c = 1 in
let b = c+ 2 in
let a = b+ 3 in
let v = a+ 4 in
(λx. x) v

3

This is fairly close to some machine instructions of the form:

set c, 1
add b, c, 2
add a, b, 3
add v, a, 4
call id, v

Using continuations, functions can be transformed into “functions that don’t return”—i.e., functions that
take, besides the usual arguments, an additional argument representing a continuation. When the function
ànishes, it invokes the continuation on its result, instead of returning the result to its caller. Writing func-
tions in this way is usually referred to as Continuation-Passing Style, or CPS for short. For instance, the
CPS version of factorial looks like the following:

FACTcps = Y λf. λn, k. if n = 0 then k 1 else f (n− 1) (λv. k (n ∗ v))

Note that the last thing that code in FACTcps does is call a function (either k or f), and does not do anything
with the result.

Continuation-passing style is an important concept in the compilation of functional languages and is
used as an intermediate compiler representation (it has been used in compilers for Scheme, ML, etc). The
main advantage is that CPS makes the control áow explicit and makes it easier to translate functional code
to machine code where control is explicit (in the form of sequences of machine instructions and jumps). For
instance, a CPS call can be easily translated into a jump to the invoked method, since the invoked function
does not return the control.

4.1 CPS translation

We can translate λ-calculus programs into continuation-passing style. We deàne a translation function
CPS[[·]], which takes a CBV λ-calculus expression, and translates the expression to a CBV λ-calculus ex-
pression in continuation-passing style.

Let’s consider a translation from λ-calculus with pairs and integers. The syntax of the source language
is as follows.

e ::= x | λx. e | e1 e2 | n | e1 + e2 | (e1, e2) | #1 e | #2 e

The translation CPS[[e]] will produce a function that whose argument is the continuation to which to pass
the result. That is, for all expressions e, the translation is of the form CPS[[e]] = λk. . . . , where k is a
continuation. We will both assume and guarantee that for any expression e, the translation CPS[[e]] =
λk. . . . will apply k to the result of evaluating e.

For convenience, instead of writing CPS[[e]] = λk. . . . we write CPS[[e]] k =

4

CPS[[n]] k = k n

CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m))) n is not a free variable of e2

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v, w))) v is not a free variable of e2
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))

CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

CPS[[x]] k = k x

CPS[[λx. e]] k = k (λx, k′. CPS[[e]]k′) k′ is not a free variable of e

CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k)) f is not a free variable of e2

We translate a function λx. e to a function that takes an additional argument k′, which is the continuation
after the function application. That is, k′ is the continuation to which we hand the result of evaluating the
function body. In function application, we see that in addition to the actual argument, we also give the
continuation as the additional argument.

Let’s see an example translation and execution...

CPS[[(λa. a+ 6) 7]] ID = CPS[[(λa. a+ 6)]] (λf. CPS[[7]] (λv. f v ID))

= (λf. CPS[[7]] (λv. f v ID)) (λa, k′. CPS[[a+ 6]]k′)

= (λf. (λv. f v ID) 7) (λa, k′. CPS[[a+ 6]]k′)

= (λf. (λv. f v ID) 7) (λa, k′. CPS[[a]] (λn. CPS[[6]] (λm. k′ (m+ n))))

= (λf. (λv. f v ID) 7) (λa, k′. CPS[[a]] (λn. (λm. k′ (m+ n)) 6))

= (λf. (λv. f v ID) 7) (λa, k′. (λn. (λm. k′ (m+ n)) 6) a)

→ (λv. (λa, k′. (λn. (λm. k′ (m+ n)) 6) a) v ID) 7

→ (λa, k′. (λn. (λm. k′ (m+ n)) 6) a) 7 ID

→ (λn. (λm. ID (m+ n)) 6) 7

→ (λm. ID (m+ 7)) 6

→ ID (6 + 7)

→ ID 13

→ 13

5

