
.

. .
CS 4110 – Programming Languages and Logics
Lecture #14: More λ-calculus

.

1 Lambda calculus evaluation

There are many different evaluation strategies for the λ-calculus. The most permissive is full β reduction,
which allows any redex—i.e., any expression of the form (λx. e1) e2—to step to e1{e2/x} at any time. It is
deàned formally by the following small-step operational semantics rules:

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
e1 e2 → e1 e

′
2

e1 → e′1
λx. e1 → λx. e′1

β
(λx. e1) e2 → e1{e2/x}

The call by value (CBV) strategy enforces a more restrictive strategy: it only allows an application to reduce
after its argument has been reduced to a value (i.e., a λ-abstraction) and does not allow evaluation under
a λ. It is described by the following small-step operational semantics rules (here we show a left-to-right
version of CBV):

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v1 e2 → v1 e

′
2

β
(λx. e1) v2 → e1{v2/x}

Finally, the call by name (CBN) strategy allows an application to reduce evenwhen its argument is not a value
but does not allow evaluation under a λ. It is described by the following small-step operational semantics
rules:

e1 → e′1
e1 e2 → e′1 e2

β
(λx. e1) e2 → e1{e2/x}

2 Conáuence

It is not hard to see that the fullβ reduction strategy is non-deterministic. This raises an interesting question:
does the choices made during the evaluation of an expression affect the ànal result? The answer turns out
to be no: full β reduction is conáuent in the following sense:

Theorem (Conáuence). If e →∗e1 and e →∗e2 then there exists e′ such that e1 →∗e′ and e2 →∗e′.

Conáuence can be depicted graphically as follows, where � is the multi-step evaluation relation.

.

.e

.e1 .e2

.e′

Conáuence is often also called the Church-Rosser property.

1

3 Substitution

Each of the evaluation relations forλ-calculus has aβ deàned in terms of a substitution operation on expres-
sions. Because the expressions involved in the substitution may share some variable names (and because
we are working up to α-equivalence) the deànition of this operation is slightly subtle and deàning it pre-
cisely turns out to be tricker than might àrst appear.

As a àrst attempt, consider an obvious (but incorrect) deànition of the substitution operator. Here we
are substituting e for x in some other expression:

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})
(λy.e1){e/x} = λy.e1{e/x} where y ̸= x

Unfortunately this deànition produces the wrong results when we substitute an expression with free vari-
ables under a λ. For example,

(λy.x){y/x} = (λy.y)

To àx this problem, we need to revise our deànition so thatwhenwe substitute under aλwedo not acciden-
tally bind variables in the expression we are substituting. The following deànition correctly implements
capture-avoiding substitution:

y{e/x} =

{
e if y ̸= x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e1{e/x})
(λy.e1){e/x} = λy.(e1{e/x}) where y ̸= x and y ̸∈ fv(e)

Note that in the case for λ-abstractions, we require that the bound variable y be different from the variable
xwe are substituting for and that y not appear in the free variables of e, the expression we are substituting.
Becausewework up toα-equivalence, we can always pick y to satisfy these side conditions. For example, to
calculate (λz.x z){(w y z)/x}we àrst rewrite λz.x z to λu.x u and then apply the substitution, obtaining
λu.(w y z) u as the result.

4 de Bruijn Notation

One way to avoid the tricky interaction between free and bound names in the substitution operator is to
pick a representation for expressions that doesn’t have any names at all! Intuitively, we can think of a bound
variable is just a pointer to the λ that binds it. For example, in λx.λy.y x, the y points to the àrst λ and the
x points to the second λ.

So-called de Bruijn notation uses this idea as the representation for λ expressions. Here is the grammar
for λ expressions in de Bruijn notation:

e ::= n | λ.e | e e

Variables are represented by integers n that refer to (the index of) their binder while lambda-abstractions
have the formλ.e. Note that the the variable bound by the abstraction is not named—i.e., the representation
is nameless.

2

As examples, here are several terms written using standard notation and in de Bruijn notation:

Standard de Bruijn

λx.x λ.0
λz.z λ.0
λx.λy.x λ.λ.1
λx.λy.λs.λz.x s (y s z) λ.λ.λ.λ.3 1 (2 1 0)
(λx.x x) (λx.x x) (λ.0 0) (λ.0 0)
(λx.λx.x) (λy.y) (λ.λ.0) (λ.0)

To represent a λ-expression that contains free variables in de Bruijn notation, we need a way to map the
free variables to integers. We will work with respect to a map Γ from variables to integers called a context.
As an example, if Γmaps x to 0 and y to 1, then the de Bruijn representation of x y with respect to Γ is 0 1,
while the representation of λz. x y z with respect to Γ is λ. 1 2 0. Note that in this second example, because
we have gone under a λ, we have shifted the integers representing x and y up by one to avoid capturing
them.

In genreal, whenever we work de Bruijn representations of expressions containing free variables (i.e.,
when working with respect to a context Γ) we will need to modify the indices of those variables. For
example, when we substitute an expression containing free variables under a λ, we will need to shift the
indices up so that they continue to refer to the same numbers with respect to Γ after the substitution as they
did before. For example, if we substitute 0 1 for the variable bound by the outermost λ in λ.λ.1we should
get λ.λ.2 3, not λ.λ.0 1. We will use an auxiliary function that shifts the indices of free variables above a
cutoff c up by i:

↑ic (n) =

{
n if n < c
n+ i otherwise

↑ic (λ.e) = λ.(↑ic+1 e)
↑ic (e1 e2) = (↑ic e1) (↑ic e2)

The cutoff keeps track of the variables that were bound in the original expression and so should not be
shifted as the shifting operator walks down the structure of an expression. The cutoff is 0 initially.

Using this shifting function, we can deàne substitution as follows:

n{e/m} =

{
e if n = m
n otherwise

(λ.e1){e/m} = λ.e1{(↑10 e)/m+ 1}))
(e1 e2){e/m} = (e1{e/m}) (e1{e/m})

Note that when we go under a λ we increase the index of the variable we are substituting for and shift the
free variables in the expression e up by one.

The β rule for terms in de Bruijn notation is as follows:

β
(λ.e1) e2 →↑−1

0 (e1{↑10 e2/0})

That is, we substitute occurrences of 0, the index of the variable being bound by the λ, with e2 shifted up
by one. Then we shift the result down by one to ensure that any free variables in e1 continue to refer to the
same things after we remove the λ.

3

To illustrate how this works consider the following example, which we wrote as (λu.λv.u x) y in stan-
dard notation. We will work with respect to a context where Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1

→ ↑−1
0 ((λ.1 2){(↑10 1)/0})

= ↑−1
0 ((λ.1 2){2/0})

= ↑−1
0 λ.((1 2){(↑10 2)/(0 + 1)})

= ↑−1
0 λ.((1 2){3/1})

= ↑−1
0 λ.(1{3/1}) (2{3/1})

= ↑−1
0 λ.3 2

= λ.2 1

which, in standard notation (with respect to Γ), is the same as λv.y x.

4

