CS 4110 - Programming Languages and Logics

Lecture #8: Denotational Semantics

We have now seen two operational models for programming languages: small-step and large-step. In
this lecture, we consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical function
that expresses what the program computes. We can think of an IMP program c as a function from stores to
stores: given an an initial store, the program produces a final store. For example, the program foo := bar+1
can be thought of as a function that when given an input store o, produces a final store ¢’ that is identical
to o except that it maps foo to the integer o(bar) + 1; that is, ¢/ = o[foo — o(bar) + 1]. We will model
programs as functions from input stores to output stores. As opposed to operational models, which tell us
how programs execute, the denotational model shows us what programs compute.

1 A Denotational Semantics for IMP

For each program ¢, we write C[c] for the denotation of ¢, that is, the mathematical function that c represents:
Clc] : Store — Store.

Note that C[c] is actually a partial function (as opposed to a total function), both because the store may
not be defined on the free variables of the program and because program may not terminate for certain
input stores. The function C[c] is not defined for non-terminating programs as they have no corresponding
output stores.

We will write C[[c]o for the result of applying the function C[c] to the store 0. That s, if f is the function
that C[[c] denotes, then we write C[c]o to mean the same thing as f(o).

We must also model expressions as functions, this time from stores to the values they represent. We will
write A[a] for the denotation of arithmetic expression a, and B[b] for the denotation of boolean expression

b.

Ala] : Store — Int
B[b] : Store — {true, false}

Now we want to define these functions. To make it easier to write down these definitions, we will describe
(partial) functions using sets of pairs. More precisely, we will represent a partial map f : A — B as a set
of pairs F' = {(a,b) | a € Aand b = f(a) € B} such that, for each a € A, there is at most one pair of the
form (a, ) in the set. Hence (a,b) € F is the same as b = f(a).



We can now define denotations for IMP. We start with the denotations of expressions:

Aln] = {(o,n)}
Alz] = A{(o,0(x))}
Alai + a2] = {(o,n) | (o,n1) € Afai] A (0,n2) € Afaz] An =n1 + na}

B[true] = {(o, true)}
Blfalse] = {(o, false) }
Bla1 < az] = {(o,true) | (o,n1) € AJai] A (o,n2) € Afaz] An1 < ng} U
(o

{

The denotations for commands are as follows:

Clskin] = {(0,0))
Clz :=a] = {(0,0]x +— n]) | (o,n) € Ala]}
Cler;ea] = {(o,0") | 3”. ((0,0") € Clcr] A (6", 0") € Clea])}

Note that C[c1; c2] = C[ez] o C[er], where o is the composition of relations, defined as follows: if R} C
Ax Band Ry C Bx Cthen RyoRy C AxCis RyoRy = {(a,c)|3b € B.(a,b) € Ry A(b,c) € Ra}.)
If Cc1] and C[c2] are total functions, then o is function composition.

,false) | (o,n1) € AJa1] A (0,n2) € AJaz] An1 > na}

Cl[if b then c; else o] = {(0,0") | (0, true) € B[b] A (0,0") € C[e1]} U
{(0,0") | (0, false) € B[b] A (0,0") € C[ea]}
C[while b do ¢] = {(0,0) | (0, false) € B[b]} U
{(0,0") | (0,true) € B[b] AJo". ((0,0") € C[c] A (6", 0") € C[while bdo c])}

But now we have a problem: the last “definition” is not really a definition because it expresses C [while b do ]
in terms of itself! This is not a definition but a recursive equation. What we want is the solution to this equa-
tion.

2 Fixed points

We gave a recursive equation that the function C[while b do c] must satisfy. To understand some of the
issues involved, let’s consider a simpler example. Consider the following equation for a function f : N —

N.
0 ifr=0
f(x) = {f(f _ 1) +2x — 1 otherwise (1)

This is not a definition for f, but rather an equation that we want f to satisfy. What function, or functions,
satisfy this equation for f? The only solution to this equation is the function f(x) = 2.

In general, there may be no solutions for a recursive equation (e.g., there are no functions g : N — N that
satisfy the recursive equation g(x) = g(z) + 1), or multiple solutions (e.g., find two functions g : R — R
that satisfy g(z) = 4 x g(§)).

We can compute solutions to such equations by building successive approximations. Each approxi-
mation is closer and closer to the solution. To solve the recursive equation for f, we start with the partial



function fy = 0 (i.e., fo is the empty relation; it is a partial function with the empty set for it's domain). We
compute successive approximations using the recursive equation.

0
£ = 0 ifx=0
L fo(x —1)4+ 22— 1 otherwise
{

e 0 ifx =0
2 filx —1)4+ 22 —1 otherwise
{(0

0 ifr =20
fo(x —1) 4+ 22— 1 otherwise

This sequence of successive approximations f; gradually builds the function f(z) = 2.

We can model this process of successive approximations using a higher-order function F' that takes one
approximation fj, and returns the next approximation fj1:

F:(N—=N)—- (N—=N)
where

0 ifz=0

(F(f)(z) = {f(a: — 1)+ 2z —1 otherwise

A solution to the recursive equation 1 is a function f such that f = F(f). In general, given a function
F:A— A wehave thata € A is a fixed point of F'if F'(a) = a. We also write a = fix(F") to indicate that
a is a fixed point of I

So the solution to the recursive equation 1 is a fixed-point of the higher-order function F. We can
compute this fixed point iteratively, starting with fo = () and at each iteration computing fr+1 = F(fi).
The fixed point is the limit of this process:

f=fix(F)
=foUfiufoUfzu...
=QUF0)UF(F@®)UFFFEWD)U...

—JF®

>0



