
.

. .
CS 4110 – Programming Languages and Logics
Lecture #7: IMP Properties

.

1 Equivalence of Semantics

The small-step and large-step semantics are equivalent as captured by the following theorem.

Theorem. For all commands c and stores σ and σ′ we have

⟨σ, c⟩ →∗⟨σ′, skip⟩ if and only if ⟨σ, c⟩ ⇓ σ′.

2 Non-termination

For a command c and initial state σ, the execution of the command may terminate with some ànal store σ′,
or it may diverge and never yield a ànal state. For example, the command

while true do foo := foo+ 1

always diverges while
while 0 < i do i := i+ 1

diverges if and only if the value of variable i in the initial state is positive.
If ⟨σ, c⟩ is a diverging conàguration then there is no state σ such that

⟨σ, c⟩ ⇓ σ′ or ⟨σ, c⟩ →∗⟨σ′, skip⟩.

However, in small-step semantics, diverging computations generate an inànite sequence:

⟨σ, c⟩ → ⟨σ1, c1⟩ → ⟨σ2, c2⟩ → . . .

Small-step semantics allow us to state and prove properties about programs that may diverge. Later in the
course, we will specify and prove properties that are of interest in potentially diverging computations.

3 Determinism

The semantics of IMP (both small-step and large-step) are deterministic. For example, each IMP command c
and each initial store σ evaluates to at most one ànal store.

Theorem. For all commands c and stores σ, σ1, and σ2, if ⟨σ, c⟩ ⇓ σ1 and ⟨σ, c⟩ ⇓ σ2 then σ1 = σ2.

To prove this theorem, we need an induction. But structural induction on the command cwill not work.
(Why? Which of the cases breaks?) Instead, we need to perform induction on the derivation of ⟨σ, c⟩ ⇓ σ1.
We àrst introduce some useful notation.

1

Let D be a derivation. We write D
 y if D is a derivation of y, that is, if the conclusion of D is y. For
example, if D is the following derivation

⟨σ, 6⟩ ⇓ 6 ⟨σ, 7⟩ ⇓ 7

⟨σ, 6× 7⟩ ⇓ 42

⟨σ, i := 6× 7⟩ ⇓ σ[i 7→ 42]

then we have D
 ⟨σ, i := 42⟩ ⇓ σ[i 7→ 42].
Let D and D′ be derivations. We say that D′ is an immediate subderivation of D if D′ is a derivation of

one of the premises used in the ànal rule in the derivation D. For example, the derivation

⟨σ, 6⟩ ⇓ 6 ⟨σ, 7⟩ ⇓ 7

⟨σ, 6× 7⟩ ⇓ 42

is an immediate subderivation of

⟨σ, 6⟩ ⇓ 6 ⟨σ, 7⟩ ⇓ 7

⟨σ, 6× 7⟩ ⇓ 42

⟨σ, i := 6× 7⟩ ⇓ σ[i 7→ 42]

In a proof by induction on derivations, we assume that the propertyP being proved holds for all immediate
subderivations, and we show that it holds of the conclusion.

Proof. As ⟨σ, c⟩ ⇓ σ1, there is a derivation D1 such that D1
 ⟨σ, c⟩ ⇓ σ1. Similarly, as ⟨σ, c⟩ ⇓ σ2, there is
a derivation D2 such that D2
 ⟨σ, c⟩ ⇓ σ2.

We proceed by induction on the derivationD1
 ⟨σ, c⟩ ⇓ σ1. We assume that the induction hypothesis
holds for immediate subderivations of D1. In this case, the induction hypothesis P is:

P (D) = ∀c ∈ Com. ∀σ, σ′, σ′′ ∈ Store, if D
 ⟨σ, c⟩ ⇓ σ′ and ⟨σ, c⟩ ⇓ σ′′ then σ′ = σ′′.

We analyze the possible cases for the last rule used in D1.

Case Skip: In this case

D1 =
S

...

⟨σ, skip⟩ ⇓ σ

and we have c = skip and σ1 = σ. Since the rule S is the only rule that has the command skip

in its conclusion, the last rule used in D2 must also be S, and so we have σ2 = σ and the result
holds.

Case Assgn: In this case

D1 =
A

...

⟨σ, a⟩ ⇓ n

⟨σ, x := a⟩ ⇓ σ[x 7→ n] ,

2

and we have c = x := a and σ1 = σ[x 7→ n]. The last rule used in D2 must also be A, and so
we have σ2 = σ[x 7→ n] and the result holds.1

Case Seq: In this case

D1 =
S

...

⟨σ, c1⟩ ⇓ σ′
1

...

⟨σ′
1, c2⟩ ⇓ σ1

⟨σ, c1; c2⟩ ⇓ σ1 ,

and we have c = c1; c2. The last rule used in D2 must also be S, and so we have

D2 =
S

...

⟨σ, c1⟩ ⇓ σ′
2

...

⟨σ′
2, c2⟩ ⇓ σ2

⟨σ, c1; c2⟩ ⇓ σ2 .

By the inductive hypothesis applied to the derivation

...

⟨σ, c1⟩ ⇓ σ′
1 , we have σ′

1 = σ′
2. By another

application of the inductive hypothesis to

...

⟨σ′
1, c2⟩ ⇓ σ1 , we have σ1 = σ2 and the result holds.

Case If-T: Here we have

D1 =
I-T

...

⟨σ, b⟩ ⇓ true

...

⟨σ, c1⟩ ⇓ σ1

⟨σ, if b then c1 else c2⟩ ⇓ σ1 ,

and we have c = if b then c1 else c2. The last rule used in D2 must also be I-T and so we have

D2 =
I-T

...

⟨σ, b⟩ ⇓ true

...

⟨σ, c1⟩ ⇓ σ2

⟨σ, if b then c1 else c2⟩ ⇓ σ2 .

The result holds by the inductive hypothesis applied to the derivation

...

⟨σ, c1⟩ ⇓ σ1 .
Case If-F: Similar to the case for I-T.
Case While-F: Straightforward, similar to the case for S.
Case While-T: Here we have

D1 =
W-T

...

⟨σ, b⟩ ⇓ true

...

⟨σ, c1⟩ ⇓ σ′
1

...

⟨σ′
1, c⟩ ⇓ σ1

⟨σ,while b do c1⟩ ⇓ σ1 ,

and we have c = while b do c1. The last rule used in D2 must also be W-T, and so we have

D2 =
W-T

...

⟨σ, b⟩ ⇓ true

...

⟨σ, c1⟩ ⇓ σ′
2

...

⟨σ′
2, c⟩ ⇓ σ2

⟨σ,while b do c1⟩ ⇓ σ2 .

1Strictly speaking, we also need to argue that the evaluation of a is deterministic. In this proof we will tacitly assume deter-
ministic evaluation of arithmetic and boolean expressions.

3

By the inductive hypothesis applied to the derivation

...

⟨σ, c1⟩ ⇓ σ′
1 , we have σ′

1 = σ′
2. By another

application of the inductive hypothesis, to the derivation

...

⟨σ′
1, c⟩ ⇓ σ1 , we have σ1 = σ2 and the

result holds.
Note that even though c = while b do c1 appears in the derivation of ⟨σ,while b do c1⟩ ⇓ σ1, we do
not run in to problems, as the induction is over the derivation, not over the structure of the command.

4

