
.

. .
CS 4110 – Programming Languages and Logics
Lecture #4: Large-step semantics

.

1 Large-step operational semantics

In the last lecture we de ned a semantics for our language of arithmetic expressions using a small-step
evaluation relation →⊆ Config × Config (and its re exive and transitive closure →∗). In this lecture
we will explore an alternative approach—large-step operational semantics—which yields the nal result of
evaluating an expression directly.

De ning a large-step semantics boils down to specifying a relation ⇓ that captures the evaluation of an
expression. The ⇓ relation has the following type:

⇓⊆ (Store×Exp)× (Store× Int).

We write ⟨σ, e⟩ ⇓ ⟨σ′, n⟩ to indicate that ((σ, e), (σ′, n)) ∈⇓. In other words, the expression ewith store σ
evaluates in one big step to the nal store σ′ and integer n.

We de ne the relation ⇓ inductively, using inference rules:

⟨σ, n⟩ ⇓ ⟨σ, n⟩
I

n = σ(x)

⟨σ, x⟩ ⇓ ⟨σ, n⟩
V

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′, e2⟩ ⇓ ⟨σ′′, n2⟩ n = n1 + n2

⟨σ, e1 + e2⟩ ⇓ ⟨σ′′, n⟩
A

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′, e2⟩ ⇓ ⟨σ′′, n2⟩ n = n1 × n2

⟨σ, e1 * e2⟩ ⇓ ⟨σ′′, n⟩
M

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′[x 7→ n1], e2⟩ ⇓ ⟨σ′′, n2⟩
⟨σ, x := e1 ; e2⟩ ⇓ ⟨σ′′, n2⟩

A

To illustrate the use of these rules, consider the followingproof tree, which shows that evaluating ⟨σ, foo := 3 ; foo * bar⟩
using a store σ such that σ(bar) = 7 yields σ′ = σ[foo 7→ 3] and 21 as a result:

⟨σ, 3⟩ ⇓ ⟨σ, 3⟩
I

⟨σ′, foo⟩ ⇓ ⟨σ′, 3⟩
V

⟨σ′, bar⟩ ⇓ ⟨σ′, 7⟩
V

⟨σ′, foo * bar⟩ ⇓ ⟨σ′, 21⟩
M

⟨σ, foo := 3 ; foo * bar⟩ ⇓ ⟨σ′, 21⟩
A

Acloser look to this structure reveals the relation between small step and large-step evaluation: a depth- rst
traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

1

2 Equivalence of semantics

A natural question to ask is whether the small-step and large-step semantics are equivalent. The next
theorem answers this question af rmatively.

Theorem (Equivalence of semantics). For all expressions e, stores σ and σ′, and integers n we have:

⟨σ, e⟩ ⇓ ⟨σ′, n⟩ if and only if ⟨σ, e⟩ →∗⟨σ′, n⟩

To streamline the proof, we will work with the following de nition of the multi-step relation:

⟨σ, e⟩ →∗⟨σ, e⟩
R

⟨σ, e⟩ → ⟨σ′, e′⟩ ⟨σ′, e′⟩ →∗⟨σ′′, e′′⟩
⟨σ, e⟩ →∗⟨σ′′, e′′⟩

T

Proof sketch. We show each direction separately.

=⇒: We want to prove that the following property P holds for all expressions e ∈ Exp:

P (e) , ∀σ, σ′ ∈ Store. ∀n ∈ Int. ⟨σ, e⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e⟩ →∗⟨σ′, n⟩

We proceed by structural induction on e. We have to consider each of the possible axioms and infer-
ence rules for constructing an expression.

Case e = x: Assume that ⟨σ, x⟩ ⇓ ⟨σ′, n⟩. That is, there is some derivation in the large-step opera-
tional semantics whose conclusion is ⟨σ, x⟩ ⇓ ⟨σ, n⟩. There is only one rule whose conclusion
matches the con guration ⟨σ, x⟩: the large-step rule V. Thus, we have n = σ(x) and σ′ = σ.
By the small-step rule V, we also have ⟨σ, x⟩ → ⟨σ, n⟩. By the R and T rules, we
conclude that ⟨σ, x⟩ →∗⟨σ, n⟩, which nishes the case.

Case e = n: Assume that ⟨σ, n⟩ ⇓ ⟨σ′, n′⟩. There is only one rule whose conclusion matches ⟨σ, n⟩:
the large-step rule I. Thus, we have n′ = n and σ′ = σ and so ⟨σ, n⟩ →∗⟨σ, n⟩ by the R
rule.

Case e = e1 + e2: This is an inductive case. We want to prove that if P (e1) and P (e2) hold, then
P (e) also holds. Let’s write out P (e1), P (e2), and P (e) explicitly.

P (e1) = ∀n, σ, σ′. ⟨σ, e1⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e1⟩ →∗⟨σ′, n⟩
P (e2) = ∀n, σ, σ′. ⟨σ, e2⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e2⟩ →∗⟨σ′, n⟩
P (e) = ∀n, σ, σ′. ⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩ =⇒ ⟨σ, e1 + e2⟩ →∗⟨σ′, n⟩

Assume thatP (e1) andP (e2)hold. Also assume that there existσ, σ′ andn such that ⟨σ, e1 + e2⟩ ⇓
⟨σ′, n⟩. We need to show that ⟨σ, e1 + e2⟩ →∗⟨σ′, n⟩.
We assumed that ⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩. This means that there is some derivation whose conclu-
sion is ⟨σ, e1 + e2⟩ ⇓ ⟨σ′, n⟩. By inspection, we see that only one rule has a conclusion of this
form: the A rule. Thus, the last rule used in the derivation was A and it must be the case
that ⟨σ, e1⟩ ⇓ ⟨σ′′, n1⟩ and ⟨σ′′, e2⟩ ⇓ ⟨σ′, n2⟩ hold for some n1 and n2 with n = n1 + n2.
By the induction hypothesis P (e1), as ⟨σ, e1⟩ ⇓ ⟨σ′′, n1⟩, we must have ⟨σ, e1⟩ → ∗⟨σ′′, n1⟩.
Likewise, by induction hypothesis P (e2), we have ⟨σ′′, e2⟩ → ∗⟨σ′, n2⟩. By Lemma 1 below,
we have,

⟨σ, e1 + e2⟩ →∗⟨σ′′, n1 + e2⟩,

2

and by another application of Lemma 1 we have:

⟨σ′′, n1 + e2⟩ →∗⟨σ′, n1 +n2⟩

Then, using the small-step A rule and the multi-step T rule, we have:

n = n1 + n2

⟨σ, n1 +n2⟩ → ⟨σ′, n⟩
A

⟨σ′, n⟩ →∗⟨σ′, n⟩
R

⟨σ′, n1 + n2⟩ →∗⟨σ′, n⟩
T

Finally, by two applications of Lemma 2, we obtain ⟨σ, e1 + e2⟩ →∗⟨σ′, n⟩, which nishes the
case.

Case e = e1 * e2. Similar to case for e1 + e2 above.
Case e = x := e1; e2. Omitted. Try it as an exercise.

⇐=: We proceed by induction on the derivation of ⟨σ, e⟩ → ∗⟨σ′, n⟩ with a case analysis on the last rule
used.

Case Re : Then e = n and σ′ = σ. We immediately have ⟨σ, n⟩ ⇓ ⟨σ, n⟩ by the large-step rule I.
Case Trans: Then ⟨σ, e⟩ → ⟨σ′′, e′′⟩ and ⟨σ′′, e′′⟩ →∗⟨σ′, n⟩. In this case, the induction hypothesis

gives ⟨σ′′, e′′⟩ ⇓ ⟨σ′, n⟩. The result follows from Lemma 3 below.

Lemma 1. If ⟨σ, e⟩ →∗⟨σ′, n⟩, then the following hold:

• ⟨σ, e + e2⟩ →∗⟨σ′, n + e2⟩
• ⟨σ, e * e2⟩ →∗⟨σ′, n * e2⟩
• ⟨σ, n1 + e⟩ →∗⟨σ′, n1 +n⟩
• ⟨σ, n1 * e⟩ →∗⟨σ′, n1 *n⟩

Proof. Omitted; try it as an exercise.

Lemma 2. If ⟨σ, e⟩ →∗⟨σ′, e′⟩ and ⟨σ′, e′⟩ →∗⟨σ′′, e′′⟩, then ⟨σ, e⟩ →∗⟨σ′′, e′′⟩.

Proof. Omitted; try it as an exercise.

Lemma 3. If ⟨σ, e⟩ → ⟨σ′′, e′′⟩ and ⟨σ′′, e′′⟩ ⇓ ⟨σ′, n⟩, then ⟨σ, e⟩ ⇓ ⟨σ′, n⟩.

Proof. Omitted; try it as an exercise.

3

