1 Large-step operational semantics

In the last lecture we defined a semantics for our language of arithmetic expressions using a small-step evaluation relation $\rightarrow \subseteq$ Config \times Config (and its reflexive and transitive closure \rightarrow^{*}). In this lecture we will explore an alternative approach-large-step operational semantics-which yields the final result of evaluating an expression directly.

Defining a large-step semantics boils down to specifying a relation \Downarrow that captures the evaluation of an expression. The \Downarrow relation has the following type:

$$
\Downarrow \subseteq(\text { Store } \times \mathbf{E x p}) \times(\text { Store } \times \text { Int }) .
$$

We write $\langle\sigma, e\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle$ to indicate that $\left((\sigma, e),\left(\sigma^{\prime}, n\right)\right) \in \Downarrow$. In other words, the expression e with store σ evaluates in one big step to the final store σ^{\prime} and integer n.

We define the relation \Downarrow inductively, using inference rules:

$$
\begin{gathered}
\frac{n=\sigma(x)}{\langle\sigma, n\rangle \Downarrow\langle\sigma, n\rangle} \mathrm{INT} \mathrm{VAR} \\
\frac{\left\langle\sigma, e_{1}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n_{1}\right\rangle \quad\left\langle\sigma^{\prime}, e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime \prime}, n_{2}\right\rangle \quad n=n_{1}+n_{2}}{\left\langle\sigma, e_{1}+e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime \prime}, n\right\rangle} \mathrm{ADD} \\
\frac{\left\langle\sigma, e_{1}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n_{1}\right\rangle \quad\left\langle\sigma^{\prime}, e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime \prime}, n_{2}\right\rangle \quad n=n_{1} \times n_{2}}{\left\langle\sigma, e_{1} * e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime \prime}, n\right\rangle} \mathrm{MUL} \\
\frac{\left\langle\sigma, e_{1}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n_{1}\right\rangle \quad\left\langle\sigma^{\prime}\left[x \mapsto n_{1}\right], e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime \prime}, n_{2}\right\rangle}{\left\langle\sigma, x:=e_{1} ; e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime \prime}, n_{2}\right\rangle} \mathrm{AsSGN}
\end{gathered}
$$

To illustrate the use of these rules, consider the following proof tree, which shows that evaluating $\langle\sigma$, foo :=3; foo * bar \rangle using a store σ such that $\sigma(b a r)=7$ yields $\sigma^{\prime}=\sigma[f o o \mapsto 3]$ and 21 as a result:

A closer look to this structure reveals the relation between small step and large-step evaluation: a depth-first traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

2 Equivalence of semantics

A natural question to ask is whether the small-step and large-step semantics are equivalent. The next theorem answers this question affirmatively.

Theorem (Equivalence of semantics). For all expressions e, stores σ and σ^{\prime}, and integers n we have:

$$
\langle\sigma, e\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle \text { if and only if }\langle\sigma, e\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle
$$

To streamline the proof, we will work with the following definition of the multi-step relation:

$$
\begin{gathered}
\frac{\overline{\langle\sigma, e\rangle \rightarrow^{*}\langle\sigma, e\rangle}}{\text { REFL }} \\
\frac{\langle\sigma, e\rangle \rightarrow\left\langle\sigma^{\prime}, e^{\prime}\right\rangle \quad\left\langle\sigma^{\prime}, e^{\prime}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime \prime}, e^{\prime \prime}\right\rangle}{\langle\sigma, e\rangle \rightarrow^{*}\left\langle\sigma^{\prime \prime}, e^{\prime \prime}\right\rangle} \text { Trans }
\end{gathered}
$$

Proof sketch. We show each direction separately.
\Longrightarrow : We want to prove that the following property P holds for all expressions $e \in \operatorname{Exp}$:

$$
P(e) \triangleq \forall \sigma, \sigma^{\prime} \in \text { Store. } \forall n \in \text { Int. }\langle\sigma, e\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle \Longrightarrow\langle\sigma, e\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle
$$

We proceed by structural induction on e. We have to consider each of the possible axioms and inference rules for constructing an expression.
Case $e=x$: Assume that $\langle\sigma, x\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle$. That is, there is some derivation in the large-step operational semantics whose conclusion is $\langle\sigma, x\rangle \Downarrow\langle\sigma, n\rangle$. There is only one rule whose conclusion matches the configuration $\langle\sigma, x\rangle$: the large-step rule Var. Thus, we have $n=\sigma(x)$ and $\sigma^{\prime}=\sigma$. By the small-step rule Var, we also have $\langle\sigma, x\rangle \rightarrow\langle\sigma, n\rangle$. By the Refl and Trans rules, we conclude that $\langle\sigma, x\rangle \rightarrow^{*}\langle\sigma, n\rangle$, which finishes the case.
Case $e=n$: Assume that $\langle\sigma, n\rangle \Downarrow\left\langle\sigma^{\prime}, n^{\prime}\right\rangle$. There is only one rule whose conclusion matches $\langle\sigma, n\rangle$: the large-step rule Int. Thus, we have $n^{\prime}=n$ and $\sigma^{\prime}=\sigma$ and so $\langle\sigma, n\rangle \rightarrow^{*}\langle\sigma, n\rangle$ by the Refl rule.
Case $e=e_{1}+e_{2}$: This is an inductive case. We want to prove that if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ hold, then $P(e)$ also holds. Let's write out $P\left(e_{1}\right), P\left(e_{2}\right)$, and $P(e)$ explicitly.

$$
\begin{aligned}
P\left(e_{1}\right) & =\forall n, \sigma, \sigma^{\prime} \cdot\left\langle\sigma, e_{1}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle \Longrightarrow\left\langle\sigma, e_{1}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle \\
P\left(e_{2}\right) & =\forall n, \sigma, \sigma^{\prime} \cdot\left\langle\sigma, e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle \Longrightarrow\left\langle\sigma, e_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle \\
P(e) & =\forall n, \sigma, \sigma^{\prime} \cdot\left\langle\sigma, e_{1}+e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle \Longrightarrow\left\langle\sigma, e_{1}+e_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle
\end{aligned}
$$

Assume that $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ hold. Also assume that there exist σ, σ^{\prime} and n such that $\left\langle\sigma, e_{1}+e_{2}\right\rangle \Downarrow$ $\left\langle\sigma^{\prime}, n\right\rangle$. We need to show that $\left\langle\sigma, e_{1}+e_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle$.
We assumed that $\left\langle\sigma, e_{1}+e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle$. This means that there is some derivation whose conclusion is $\left\langle\sigma, e_{1}+e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle$. By inspection, we see that only one rule has a conclusion of this form: the AdD rule. Thus, the last rule used in the derivation was AdD and it must be the case that $\left\langle\sigma, e_{1}\right\rangle \Downarrow\left\langle\sigma^{\prime \prime}, n_{1}\right\rangle$ and $\left\langle\sigma^{\prime \prime}, e_{2}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n_{2}\right\rangle$ hold for some n_{1} and n_{2} with $n=n_{1}+n_{2}$. By the induction hypothesis $P\left(e_{1}\right)$, as $\left\langle\sigma, e_{1}\right\rangle \Downarrow\left\langle\sigma^{\prime \prime}, n_{1}\right\rangle$, we must have $\left\langle\sigma, e_{1}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime \prime}, n_{1}\right\rangle$. Likewise, by induction hypothesis $P\left(e_{2}\right)$, we have $\left\langle\sigma^{\prime \prime}, e_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n_{2}\right\rangle$. By Lemma 1 below, we have,

$$
\left\langle\sigma, e_{1}+e_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime \prime}, n_{1}+e_{2}\right\rangle,
$$

and by another application of Lemma 1 we have:

$$
\left\langle\sigma^{\prime \prime}, n_{1}+e_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n_{1}+n_{2}\right\rangle
$$

Then, using the small-step Add rule and the multi-step Trans rule, we have:

$$
\frac{\frac{n=n_{1}+n_{2}}{\left\langle\sigma, n_{1}+n_{2}\right\rangle \rightarrow\left\langle\sigma^{\prime}, n\right\rangle} \text { AdD } \quad \frac{}{\left\langle\sigma^{\prime}, n\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle} \text { REFL }}{\left\langle\sigma^{\prime}, n_{1}+n_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle} \text { Trans }
$$

Finally, by two applications of Lemma 2, we obtain $\left\langle\sigma, e_{1}+e_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle$, which finishes the case.
Case $e=e_{1} * e_{2}$. Similar to case for $e_{1}+e_{2}$ above.
Case $e=x:=e_{1} ; e_{2}$. Omitted. Try it as an exercise.
\Longleftarrow : We proceed by induction on the derivation of $\langle\sigma, e\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle$ with a case analysis on the last rule used.

Case Refl: Then $e=n$ and $\sigma^{\prime}=\sigma$. We immediately have $\langle\sigma, n\rangle \Downarrow\langle\sigma, n\rangle$ by the large-step rule Int. Case Trans: Then $\langle\sigma, e\rangle \rightarrow\left\langle\sigma^{\prime \prime}, e^{\prime \prime}\right\rangle$ and $\left\langle\sigma^{\prime \prime}, e^{\prime \prime}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle$. In this case, the induction hypothesis gives $\left\langle\sigma^{\prime \prime}, e^{\prime \prime}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle$. The result follows from Lemma 3 below.

Lemma 1. If $\langle\sigma, e\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n\right\rangle$, then the following hold:

- $\left\langle\sigma, e+e_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n+e_{2}\right\rangle$
- $\left\langle\sigma, e * e_{2}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n * e_{2}\right\rangle$
- $\left\langle\sigma, n_{1}+e\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n_{1}+n\right\rangle$
- $\left\langle\sigma, n_{1} * e\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, n_{1} * n\right\rangle$

Proof. Omitted; try it as an exercise.
Lemma 2. If $\langle\sigma, e\rangle \rightarrow^{*}\left\langle\sigma^{\prime}, e^{\prime}\right\rangle$ and $\left\langle\sigma^{\prime}, e^{\prime}\right\rangle \rightarrow^{*}\left\langle\sigma^{\prime \prime}, e^{\prime \prime}\right\rangle$, then $\langle\sigma, e\rangle \rightarrow^{*}\left\langle\sigma^{\prime \prime}, e^{\prime \prime}\right\rangle$.
Proof. Omitted; try it as an exercise.
Lemma 3. If $\langle\sigma, e\rangle \rightarrow\left\langle\sigma^{\prime \prime}, e^{\prime \prime}\right\rangle$ and $\left\langle\sigma^{\prime \prime}, e^{\prime \prime}\right\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle$, then $\langle\sigma, e\rangle \Downarrow\left\langle\sigma^{\prime}, n\right\rangle$.
Proof. Omitted; try it as an exercise.

