
.

. .
CS 4110 – Programming Languages and Logics
Lecture #3: Inductive deånitions and proofs

.

In this lecture, we will use the semantics of our simple language of arithmetic expressions,

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2,

to express useful program properties, and we will prove these properties by induction.

1 Program Properties

There are a number of interesting questions about a language one can ask: Is it deterministic? Are there
non-terminating programs? What sorts of errors can arise during evaluation? Having a formal semantics
allows us to express these properties precisely.

• Determinism: Evaluation is deterministic,

∀e ∈ Exp. ∀σ, σ′, σ′′ ∈ Store. ∀e′, e′′ ∈ Exp.
if ⟨σ, e⟩ → ⟨σ′, e′⟩ and ⟨σ, e⟩ → ⟨σ′′, e′′⟩ then e′ = e′′ and σ′ = σ′′.

• Termination: Evaluation of every expression terminates,

∀e ∈ Exp. ∀σ ∈ Store. ∃σ′ ∈ Store. ∃e′ ∈ Exp. ⟨σ, e⟩ →∗ ⟨σ′, e′⟩ and ⟨σ′, e′⟩ ̸→,

where ⟨σ′, e′⟩ ̸→ is shorthand for ¬ (∃σ′′ ∈ Store. ∃e′′ ∈ Exp. ⟨σ′, e′⟩ → ⟨σ′′, e′′⟩).

It is tempting to want the following soundness property,

• Soundness: Evaluation of every expression yields an integer,

∀e ∈ Exp. ∀σ ∈ Store. ∃σ′ ∈ store. ∃n′ ∈ Int. ⟨σ, e⟩ →∗⟨σ′, n′⟩,

but unfortunately it does not hold in our language. For example, consider the totally-undeànedmap σ and
the expression i + j. The conàguration ⟨σ, i + j⟩ is stuck—it has no possible transitions—but i + j is not an
integer. The problem is that i + j has free variables but σ does not contain mappings for those variables. To
àx this problem, we can restrict our attention to well-formed conàgurations ⟨σ, e⟩, where σ is deàned on (at
least) the free variables in e. This makes sense as evaluation typically starts with a closed expression.

We can deàne the set of free variables of an expression as follows:

fvs(x) , {x}
fvs(n) , {}

fvs(e1 + e2) , fvs(e1) ∪ fvs(e2)

fvs(e1 * e2) , fvs(e1) ∪ fvs(e2)

fvs(x := e1 ; e2) , fvs(e1) ∪ (fvs(e2) \ {x})

Now we can formulate two properties that imply a variant of the soundness property above:

1

• Progress: For each expression e and store σ such that the free variables of e are contained in the
domain of σ, either e is an integer or there exists a possible transition for ⟨σ, e⟩,

∀e ∈ Exp. ∀σ ∈ Store.
fvs(e) ⊆ dom(σ) =⇒ e ∈ Int or (∃e′ ∈ Exp. ∃σ′ ∈ Store. ⟨σ, e⟩ → ⟨σ′, e′⟩)

• Preservation: Evaluation preserves containment of free variables in the domain of the store,

∀e, e′ ∈ Exp. ∀σ, σ′ ∈ Store.
fvs(e) ⊆ dom(σ) and ⟨σ, e⟩ → ⟨σ′, e′⟩ =⇒ fvs(e′) ⊆ dom(σ′).

The rest of this lecture shows how can we prove such properties using induction.

2 Inductive sets

Induction is an important concept in programming language theory. An inductively-deàned setA is one that
is described using a ànite collection of axioms and inductive (inference) rules. Axioms of the form

a ∈ A

indicate that a is in the set A. Inductive rules

a1 ∈ A . . . an ∈ A

a ∈ A

indicate that if a1, . . . , an are all elements of A, then a is also an element of A.
The set A is the set of all elements that can be inferred to belong to A using a (ànite) number of appli-

cations of these rules, starting only from axioms. In other words, for each element a of A, we must be able
to construct a ànite proof tree whose ànal conclusion is a ∈ A.

Example 1. The set described by a grammar is an inductive set. For instance, the set of arithmetic expres-
sions can be described with two axioms and three inference rules:

x ∈ Exp n ∈ Exp

e1 ∈ Exp e2 ∈ Exp

e1 + e2 ∈ Exp

e1 ∈ Exp e2 ∈ Exp

e1 * e2 ∈ Exp

e1 ∈ Exp e2 ∈ Exp

x := e1 ; e2 ∈ Exp

These axioms and rules describe the same set of expressions as the grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

Example 2. The natural numbers (expressed here in unary notation) can be inductively deàned:

0 ∈ N
n ∈ N

succ(n) ∈ N

Example 3. The small-step evaluation relation → is an inductively deàned set.

2

Example 4. The multi-step evaluation relation can be inductively deàned:

⟨σ, e⟩ →∗⟨σ, e⟩
R

⟨σ, e⟩ → ⟨σ′, e′⟩ ⟨σ′, e′⟩ →∗⟨σ′′, e′′⟩
⟨σ, e⟩ →∗⟨σ′′, e′′⟩

T

Example 5. The set of free variables of an expression e can be inductively deàned:

y ∈ fvs(y)

y ∈ fvs(e1)

y ∈ fvs(e1 + e2)

y ∈ fvs(e2)

y ∈ fvs(e1 + e2)

y ∈ fvs(e1)

y ∈ fvs(e1 * e2)

y ∈ fvs(e2)

y ∈ fvs(e1 * e2)

y ∈ fvs(e1)

y ∈ fvs(x := e1 ; e2)

y ̸= x y ∈ fvs(e2)

y ∈ fvs(x := e1 ; e2)

3 Inductive proofs

Wecanprove facts about elements of an inductive set using an inductive reasoning that follows the structure
of the set deànition.

3.1 Mathematical induction

You have probably seen proofs by induction over the natural numbers, called mathematical induction. In
such proofs, we typically want to prove that some property P holds for all natural numbers, that is, ∀n ∈
N. P (n). A proof by induction works by àrst proving that P (0) holds, and then proving for all m ∈ N, if
P (m) then P (m+ 1). The principle of mathematical induction can be stated succinctly as

P (0) and (∀m ∈ N. P (m) =⇒ P (m+ 1)) =⇒ ∀n ∈ N. P (n).

The proposition P (0) is the basis of the induction (also called the base case) while P (m) =⇒ P (m + 1)
is called induction step (or the inductive case). While proving the induction step, the assumption that P (m)
holds is called the induction hypothesis.

3.2 Structural induction

Given an inductively deàned setA, to prove that a propertyP holds for all elements ofA, we need to show:

1. Base cases: For each axiom

a ∈ A,

P (a) holds.

2. Inductive cases: For each inference rule

a1 ∈ A . . . an ∈ A

a ∈ A ,

if P (a1) and . . . and P (an) then P (a).

3

Note that if the set A is the set of natural numbers from Example 2 above, then the requirements for
proving that P holds for all elements of A is equivalent to mathematical induction.

If A describes a syntactic set, then we refer to induction following the requirements above as structural
induction. If A is an operational semantics relation (such as the small-step operational semantics relation
→) then such an induction is called induction on derivations. We will see examples of structural induction
and induction on derivations throughout the course.

3.3 Example: Progress

Let’s consider the progress property deàned above, and repeated here:

Progress: For each store σ and expression e such that the free variables of e are contained in the domain of
σ, either e is an integer or there exists a possible transition for ⟨σ, e⟩:

∀e ∈ Exp. ∀σ ∈ Store. fvs(e) ⊆ dom(σ) =⇒ e ∈ Int or (∃e′ ∈ Exp. ∃σ′ ∈ Store. ⟨σ, e⟩ → ⟨σ′, e′⟩)

Let’s rephrase this property in terms of an explicit predicate on expressions:

P (e) , ∀σ ∈ Store. fvs(e) ⊆ dom(σ) =⇒ e ∈ Int or
(
∃e′, σ′. ⟨σ, e⟩ → ⟨σ′, e′⟩

)
The idea is to build a proof that follows the inductive structure given by the grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

This technique is called “structural induction on e.” We analyze each case in the grammar and show that
P (e) holds for that case. Since the grammar productions e1 + e2 and e1 * e2 and x := e1 ; e2 are inductive,
they are inductive steps in the proof; the cases for x and n are base cases. The proof proceeds as follows.

Proof. Let e be an expression. We will prove that

∀σ ∈ Store. fvs(e) ⊆ dom(σ) =⇒ e ∈ Int or
(
∃e′, σ′. ⟨σ, e⟩ → ⟨σ′, e′⟩

)
by structural induction on e. We analyze several cases, one for each case in the grammar for expressions:

Case e = x: Let σ be an arbitrary store, and assume that fvs(e) ⊆ dom(σ). By the deànition of fvs we
have fvs(x) = {x}. By assumption we have {x} ⊆ dom(σ) and so x ∈ dom(σ). Let n = σ(x). By
the V axiom we have ⟨σ, x⟩ → ⟨σ, n⟩, which ànishes the case.

Case e = n: We immediately have e ∈ Int, which ànishes the case.
Case e = e1 + e2: Let σ be an arbitrary store, and assume that fvs(e) ⊆ dom(σ). We will assume that

P (e1) and P (e2) hold and show that P (e) holds. Let’s expand these properties. We have

P (e1) = ∀σ ∈ Store. fvs(e1) ⊆ dom(σ) =⇒ e1 ∈ Int or (∃e′, σ′. ⟨σ, e1⟩ → ⟨σ′, e′⟩)
P (e2) = ∀σ ∈ Store. fvs(e2) ⊆ dom(σ) =⇒ e2 ∈ Int or (∃e′, σ′. ⟨σ, e2⟩ → ⟨σ′, e′⟩)

and want to prove:

P (e1 + e2) = ∀σ ∈ Store. fvs(e1+e2) ⊆ dom(σ) =⇒ e1 + e2 ∈ Int or (∃e′, σ′. ⟨σ, e1 + e2⟩ → ⟨σ′, e′⟩)

We analyze several subcases.

4

Subcase e1 = n1 and e2 = n2: By rule A, we immediately have ⟨σ, n1 +n2⟩ → ⟨σ, p⟩, where p =
n1 + n2.

Subcase e1 ̸∈ Int: By assumption and the deànition of fvs we have

fvs(e1) ⊆ fvs(e1 + e2) ⊆ dom(σ)

Hence, by the induction hypothesis P (e1) we also have ⟨σ, e1⟩ → ⟨σ′, e′⟩ for some e′ and σ′.
By rule LA we have ⟨σ, e1 + e2⟩ → ⟨σ′, e′ + e2⟩.

Subcase e1 = n1 and e2 ̸∈ Int: By assumption and the deànition of fvs we have

fvs(e2) ⊆ fvs(e1 + e2) ⊆ dom(σ)

Hence, by the induction hypothesis P (e2) we also have ⟨σ, e2⟩ → ⟨σ′, e′⟩ for some e′ and σ′.
By rule RA we have ⟨σ, e1 + e2⟩ → ⟨σ′, e1 + e′⟩, which ànishes the case.

Case e = e1 * e2: . Analogous to the previous case.
Case e = x := e1 ; e2: . Let σ be an arbitrary store, and assume that fvs(e) ⊆ dom(σ). As above, we

assume that P (e1) and P (e2) hold and show that P (e) holds. Let’s expand these properties. We
have

P (e1) = ∀σ. fvs(e1) ⊆ dom(σ) =⇒ e1 ∈ Int or (∃e′, σ′. ⟨σ, e1⟩ → ⟨σ′, e′⟩)
P (e2) = ∀σ. fvs(e2) ⊆ dom(σ) =⇒ e2 ∈ Int or (∃e′, σ′. ⟨σ, e2⟩ → ⟨σ′, e′⟩)

and want to prove:

P (x := e1 ; e2) = x := e1 ; e2 ∈ Int or (∃e′, σ′. ⟨σ, x := e1 ; e2⟩ → ⟨σ′, e′⟩)

We analyze several subcases.

Subcase e1 = n1: By rule A we have ⟨σ, x :=n1 ; e2⟩ → ⟨σ′, e2⟩ where σ′ = σ[x 7→ n1].
Subcase e1 ̸∈ Int: By assumption and the deànition of fvs we have

fvs(e1) ⊆ fvs(x := e1 ; e2) ⊆ dom(σ)

Hence, by induction hypothesis we also have ⟨σ, e1⟩ → ⟨σ′, e′⟩ for some e′ and σ′. By the rule
A we have ⟨σ, x := e1 ; e2⟩ → ⟨σ′, x := e′1 ; e2⟩, which ànishes the case and the inductive
proof.

5

