CS410 Fall 99 Final Exam Solutions 12/14/99

1. Consider the following pseudocode fragment.

void arrayCrunch(int[] a) {

if (a.length > 1) {

Do something to a that takes time

O(log(a.length));

Split a into two equal size pieces b and c

in constant time;

arrayCrunch(b);

arrayCrunch(c);

combine b and c in time O(a.length);

}

}

(a) Write a recurrence that describes the time used by this program.

(b) Solve the recurrence. Use O() notation for your solution.

2. True or false?

(a) 2n is O(n). true
(b) n2 is O((n5/2 + n3/2)/2). true
(c) log20(n) is O(log(n20)). true
(d) Inserting a new element into a singly linked list takes O(1) time. (You do not need to check if the element is already on the list, just insert it.) true
(e) Inserting a new element into a doubly linked list takes O(1) time. (You do not need to check if the element is already on the list, just insert it.) true
(f) Given a pointer to an element of a singly linked list, the element can be deleted in O(1) time. false
(g) Given a pointer an element of a doubly linked list, the element can be deleted in O(1) time. true
3. Suppose I claim to have an implementation of a priority queue in which n insert operations can be done in amortized time O(1) per operation followed by n extractMin operations that can be done in amortized time O(log n/log log n) per operation. Why do you not believe me?

4. Consider the following dag.

 c f j

 a k

 d g

 b e h

(a) In what order are the vertices entered in Depth First Search (DFS) starting from vertex a? That is, list the vertices in order according to when they are seen for the first time. When there is a choice of vertices to visit next, use alphabetical order.

(b) In what order are the vertices exited in DFS starting from vertex a? That is, list the vertices in the order in which are seen for the last time.

(c) Draw the DFS tree. Label the vertices with their names and label the edges as tree, forward, backward, or cross edges.

5. An undirected graph is bipartite if either of the following two equivalent conditions holds:

(a) There are no odd-length cycles.

(b) The graph is 2-colorable; i.e., it is possible to color each vertex either black or white so that every edge connects a black vertex and a white vertex.

Give a linear-time algorithm for determining whether a given undirected graph is bipartite and for giving a 2-coloring of the vertices if so.

6. Construct a Huffman tree for the following alphabet and frequencies:

a
b
c
d
e
f
g
h

8
1
12
2
8
2
2
3

7. Suppose we wish to insert the keys 3, 13, 31, 21, 15 into a hashtable of size 5 with the hash function h(x) = x mod 5.

(a) Show the hashtable that results when we use chaining.

(b) Show the hashtable that results when we use linear probing.

(c) Show the hashtable that results when we use double hashing. For the second hash function use g(x) = (x+1) mod 5.

8. The following matrix might be used in an all-pairs shortest path computation. Draw the labeled directed graph corresponding to this matrix.

(
3
9

(
(
4

2
(
(

9. If the matrix of problem 8 is M, what is M* ?

 0
 3
 7

 6
 0
 4

 2
 5
 0

10. Consider the following heap:

 3

 / \

 14 8

 / \ / \

 16 19 15 9

 /

 20

(a) Show the standard array representation of the heap with the root at position 1.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

3
14
8
16
19
15
9
20

(b) Show what the heap looks like after deleting the minimum element.

(c) Show what the heap looks like after inserting 4 into the original heap.

11. The bitstring below represents a message encoded using the Lempel-Ziv technique with a fixed codeword length of 9 bits. The first 256 codes (decimal 0 through 255, binary 000000000 through 011111111) give the ASCII codes of single characters. The sequence is partitioned into 9-bit blocks to help you read it.

001010011 001001001 001001110 001000111 000100000 100000001 100000000 001000100 001000101

In decimal, the coded string is 83 73 78 71 32 257 256 68 69.

Decode the string. If correct, your decoding should produce an English phrase. The following table of ASCII codes will be helpful:

Character
Decimal
9-bit binary

A
65
001000001

C
67
001000011

D
68
001000100

E
69
001000101

G
71
001000111

I
73
001001001

K
75
001001011

N
78
001001110

O
79
001001111

R
82
001010010

S
83
001010011

T
84
001010100

(space)
32
000100000

12. Draw the suffix tree for the string barbara. Label edges and leaves appropriately. You need not include the auxiliary link edges used in McCreight’s algorithm.

13. Describe a linear time algorithm for finding the longest string that occurs at least three times as a substring of a given a string s. Do not give pseudocode, but give a high-level description in English.

14. Explain how to sort n keys, each of which is a positive integer at most 5, in O(n) time.

15. Explain how to construct a Huffman tree from a given set of n (character, frequency) pairs in O(n log n) time.

O(n log n)

T(n) = 2T(n/2) + cn + d log n

k h j g e f d b c a

a b d e g h k j f c

Such a data structure would admit an o(n log n) comparison-based sort: insert n elements in time O(n) and then extract them in increasing order in time O(n log n/log log n) = o(n log n). This contradicts the lower bound of ((n log n) proved in class.

 c f j

 T C T C T C

 a d g k

 T T T T T T

 b e h

Pick a vertex and color it white without loss of generality. Construct and search the DFS tree starting from that vertex as the root, assigning the colors in depth-first order. When seeing a new vertex for the first time (i.e., when traversing a tree edge), assign the new vertex the opposite color of its parent. When traversing a back edge, check that the two endpoints of the edge have opposite colors. If not, halt and report failure; we have found an odd cycle. If the search of the entire tree is successful, the resulting coloring is a 2-coloring of that connected component.

Repeat with the other connected components.

BFS can also be used.

 There are multiple correct answers. Here is one:

 38

 / \

 22 16

 / \ / \

 10 c a e

 / \ 12 8 8

 6 4

 / \ / \

 3 3 2 2

 / \ h f g

2

b d

SING INSIDE

Construct the suffix tree for s. Search the suffix tree depth-first, recording at each node the string depth (length of the concatenation of all the strings labeling the path from the root down to that node) and the number of leaves below it. Output a node of maximum string depth with at least 3 leaves below it.

Use counting sort.

Build a heap containing all n (character,frequency) pairs, using the frequency as key. Repeat the following n-1 times: extract the two minimum elements, combine them into a tree, and reinsert the tree back into the heap. The key of the new tree is the sum of the keys of the two elements extracted. After n-1 stages, we are left with one tree, which is the Huffman tree.

It takes O(n) time to build the heap. Each stage takes O(log n) time for the two extractMins and reinserting the resulting tree, or O(n log n) in all.

0: 15

1: 21—31

2: -

3: 13—3

4: -

0: 15

1: 31

2: 21

3: 3

4: 13

0: 21

1: 31

2: 13

3: 3

4: 15

Vertices are 0,1,2.

Edges are (0,1), (0,2), (1,2), (2,0) with weights 3, 9, 4, 2, respectively.

 8

 / \

 14 9

 / \ / \

 16 19 15 20

 3

 / \

 4 8

 / \ / \

 14 19 15 9

 / \

 20 16

Vertices are 0,1,…,12. Edges are

(0,4) label = [0,3) bar

(0,10) label = [1,2) a

(0,8) label = [2,3) r

(4,1) label = [3,8) bara$

(4,5) label = [6,8) a$

(6,2) label = [3,8) bara$

(6,7) label = [6,8) a$

(8,3) label = [3,8) bara$

(8,9) label = [6,8) a$

(10,6) label = [2,3) r

(10,11) label = [7,8) $

(0,12) label = [7,8) $

