The plan for this week

I’m going to review (since you should have seen it in CS211) some basic data structures:

- stacks
- queues
- linked lists
- trees

Then I’ll go into more details on hashing.

- You probably saw that in CS211 too, but I’ll cover it in more depth.
Stacks

Stacks support
• **Insert = Push**
• **Delete(Maximum) = Pop**
• test for emptiness: **Stack-Empty**

Stacks are implemented as arrays
• new elements are inserted at the end
• $top[S]$ is the length of the array
• elements are retrieved from the end
 ○ LIFO: last in, first out
Stack Operations

STACK-EMPTY(S)
1. if $top(S) = 0$
2. then return *True*
3. else return *False*

Push(S, x)
1. $top(S) \leftarrow top(S) + 1$
2. $S[top[S]] \leftarrow x$

Pop(S)
1. if $top(S) = 0$ then return *error* “underflow”
2. $top(S) \leftarrow top(S) - 1$
3. return $S[top(S) + 1]$

- All these operations run in time $O(1)$
Queues

Queues support

- \textbf{INSERT} = \textbf{ENQUEUE}
- \textbf{DELETE(MINIMUM)} = \textbf{DEQUEUE}

Queues are implemented as arrays

- Have two indices: \textit{head} and \textit{tail}
- new elements are inserted at the tail
- elements are retrieved from the head
 - \textbf{FIFO}: first in, first out
Queue Operations

ENQUEUE(Q, x)

1. \(Q[\text{tail}[Q]] \leftarrow x\)
2. if \(\text{tail}[Q] = \text{length}[Q]\)
3. then \(\text{tail}[Q] \leftarrow 1\) [wraparound]
4. else \(\text{tail}[Q] \leftarrow \text{tail}[Q] + 1\)

DEQUEUE(Q)

1. \(x \leftarrow Q[\text{head}[Q]]\)
2. if \(\text{head}[Q] = \text{length}[Q]\)
3. then \(\text{head}[Q] \leftarrow 1\) [wraparound]
4. else \(\text{head}[Q] \leftarrow \text{head}[Q] + 1\)
5. return \(x\)

(We’re ignoring error conditions here.)

- **ENQUEUE, DEQUEUE** also run in \(O(1)\) time.
Linked Lists

There are many operations on dynamic sets that can’t be performed on Stacks and Queues (without implementing extra operations)

• E.g., searching, inserting

Linked lists are simple data structures that let us implement them all (not necessarily efficiently)

• *doubly linked list*: each entry contains a key, two pointers (*next* and *prev*), and perhaps other data
 ○ if *next*(*x*) = NIL then *x* has no successor
 ○ if *prev*(*x*) = NIL then *x* has no predecessor

• *singly linked list*: no *prev* pointer

• *head*[L]/*tail*[L] is the first/last element of *L*;
 ○ can access *L* only by the head and tail
 ○ *prev*(*head*[L]) = *next*(*tail*[L]) = NIL

• *circular list*: *next*(*tail*[L]) = *head*[L];
 prev(*head*[L]) = *tail*[L]
Implementing Linked Lists

How do we implement linked lists in languages without pointers?

- Techniques useful even without pointers

Assuming no additional data, could use three arrays:

- *key*, *next*, *prev*

If keys have different sizes (or there is additional data), may be more efficient to use a single array:

- An entry is a contiguous part of the array *A*[j..k]*

- *key* is located at *A*[j], *next* pointer is in *A*[j + 1], *prev* is in *A*[j + 2], rest of the data is in *A*[j + 3, k].
Allocation and Free Lists

Suppose we use an array (or several arrays) of length n to represent a linked list.

- Where in the array do we put a new element?
- Can’t just use an initial segment of the array, because elements are getting deleted as well as inserted.

If each record (element) takes a fixed amount of space, can use a free list to keep track of free slots in the array.

- the free list is best implemented as a stack
 - POP a slot when you need to insert an element
 - PUSH a slot after its element has been deleted
Searching and Inserting in Linked Lists

To search a list for key k, start at the head and work towards the tail:

LIST-SEARCH(L, k)

1. $x \leftarrow head[L]$
2. **while** $x \neq NIL$ and $key[x] \neq k$
3. **do** $x \leftarrow next[x]$
4. **return** x

If k is not in the list, then we return NIL.
- Takes time $O(n)$ if k is not in the list

Insert a new element at the head:

LIST-INSERT(L, x)

1. $next[x] \leftarrow head[L]$
2. **if** $head[L] \neq NIL$ [list is not empty]
3. **then** $prev[head[L]] \leftarrow x$
4. $head[L] \leftarrow x$
5. $prev[x] \leftarrow NIL$
Deletion in Linked Lists

To delete x, edit it out of the list:

\[
\text{LIST-DELETE}(L, x)
\]

1. if $\text{prev}[x] \neq \text{NIL}$
2. then $\text{next}[^{\text{prev}}[x]] \leftarrow \text{next}[x]$
3. else $\text{head}[L] \leftarrow \text{next}[x]$
4. if $\text{next}[x] \neq \text{NIL}$
5. then $\text{prev}[^{\text{next}}[x]] \leftarrow \text{prev}[x]$

Deletion takes $O(1)$ for doubly-linked lists

- It’s important here that x is a pointer, not a key
- If it’s a key, deletion take $O(n)$

Deletion takes $O(n)$ for singly-linked lists

- Problem: need to find the predecessor of x so that $\text{next}[\text{predecessor}]$ can be set to $\text{next}[x]$.
Representing Rooted Trees

Suppose we have a (rooted) binary tree. Then can use something like a linked list:

- `head` points to the root
- `prev[x]` points to the (unique) parent of `x`
- instead of `next`, have `left-child` and `right-child`
 - `x` has two successors, not one

Similar ideas work for `k`-ary trees, if `k` is bounded.

What happens if we have no bound on the branching factor of the tree?

- Hard to allocate space upfront if we represent each child explicitly
- Even if we have an upper bound of `k`, but most nodes have fewer than `k` children, there will be lots of wasted space.
Left-child Right-sibling representation

Left-child right-sibling representation

- This uses only $O(n)$ space for an n-node tree.
Direct-Address Tables

Suppose we want to implement a dictionary

- **Insert, Delete, Search**

Assume keys are drawn from \{0, 1, \ldots, m - 1\}

- \(m\) is “not too large”
- all keys distinct

Can just use an array \(T[0..m - 1]\)

- \(T[k]\) points to element with key \(k\)
- \(T[k] = \text{NIL}\) if there is no element with key \(k\)
- insertion, deletion, and search are all trivial
 - \(O(1)\) worst-case time

Problem: what happens if \(m\) is large?

- storing a table of size \(m\) may be impractical (or impossible)
Hash Tables

The idea of using $key[x]$ to determine where x is stored is good.

- Keys are drawn from universe U
- **Hash function** $h : U \rightarrow \{1, \ldots, m\}$
 - k hashes to $h(k)$
- Array has length m instead of $|U|$
 - Problem: What happens of $h(k) = h(k')$? A **collision**!

- A good hash function minimizes the chances of collisions
 - Can’t avoid them altogether if $|U| > m$
- A good implementation of hashing minimizes the impact of collisions
Collision Resolution by Chaining

In chaining, put all the elements that hash to the same slot in a linked list.

- Slot j has a pointer to the head of a linked list containing all the elements that hash to j
- If there aren’t any elements that hash to j, slot j contains NIL.

Simple algorithms for dictionary operations:

CHAINED-HASH-INSERT(T, x)

1. insert x at the head of list $T[h(key[x])]$

CHAINED-HASH-SEARCH(T, k)

Basically just linked-list search (see LIST-SEARCH(L, k))

1. $y \leftarrow T[h(k)]$
 $T[h(k)]$ is the head of the linked list
2. while $y \neq \text{NIL}$ or $key[y] \neq k$
3. do $y \leftarrow \text{next}[y]$
4. return y

CHAINED-HASH-DELETE(T, x)

1. delete x from the list $T[h(key[x])]$
• Insertion is $O(1)$
• Deletion is $O(1)$ for doubly-linked lists, $O(e)$ for singly-linked lists, where e is number of elements in list
• Searching is also $O(e)$ …
Analysis of Hashing with Chaining

If a table T has m slots and n keys are stored, the load factor of T is $\alpha = n/m$:

- the average number of elements per slot
- the average number of elements in a list

The worst-case behavior of hashing is like that of linked lists:

- happens if all keys are hashed to the same slot

Assume that each element is equally likely to hash into any slot.

- simple uniform hashing
Theorem: Using hashing with chaining, a search (successful or unsuccessful) takes time $O(\alpha + 1)$ on average, assuming simple uniform hashing.

Proof: Every key is equally likely to hash to any slot.

- the average length of a list is α
- in an unsuccessful search, we need to look at all of them
- in a successful search, on average, we look at half of them

If $n = O(m)$, then $\alpha = O(1)$ and searching is fast.

- Hashing is great for dictionary operations
- Not so good for max and min
Choosing a Good Hash Function

We want a hash function for which each key is equally likely to hash to any slot no matter how keys are distributed.

- E.g.: if keys are identifiers in a program, closely related symbols are likely to occur (pt and pts)

Sometimes want keys that are “close” to yield hash values that are far apart.
The Division Method

Assumption: All keys are natural numbers.

- Can convert names to numbers using a standard translation

Division Method: $h(k) = k \mod m$

- if $m = 12$, then $h(100) = h(16) = 4$

Bad choices for m:

- $m = 2^p$ means that $h(k)$ is the p lower-order bits (if k is written base 2)
 - can be bad if not all patterns equally likely
- $m = 10^p$ is bad if k is written base 10

Good choice for m: a prime number

- If you have an estimate n for $|U|$, and a tolerable load factor α, choose a prime $m \sim n/\alpha$
The Multiplication Method

The Multiplication Method:

\[h(k) = \lfloor m(kA \mod 1) \rfloor \]

Explanation:
1. Choose a fixed constant \(A \) with \(0 < A < 1 \), compute \(kA \)
2. \(kA \mod 1 \) is the fractional part of \(kA \)
3. multiply this by \(m \) and take the floor of the answer

Example: Suppose \(A = 7/10 \), \(m = 5 \)

- \(h(117) = \lfloor 5(819/10 \mod 1) \rfloor = \lfloor 5(9/10) \rfloor = 4 \)

Almost any choice of \(A \) and \(m \) will work but . . .

- Choosing \(m \) a power of 2 (\(m = 2^p \)) makes for easy implementation

- Choose \(A \) so that, if rational, its denominator is > \(m \)

- Knuth suggests \(A \approx (\sqrt{5} - 1)/2 \)
Universal Hashing

If I know your hash function, then I can choose \(n \) keys that all hash to the same slot.

Better idea:

- Choose the hash function randomly, so that no malicious adversary can foil you
- That’s what *universal hashing* [Carter-Wegman] is all about

Formally, let \(\mathcal{H} \) be a set of hash functions.

- \(\mathcal{H} \) is *universal* if, for all \(x, y \), the number of hash functions \(h \) such that \(h(x) = h(y) \) is \(|\mathcal{H}|/m \)
- Therefore, if \(h \in \mathcal{H} \) is chosen randomly, the probability that \(h(x) = h(y) \) is \(1/m \)
 - \(1/m \) functions cause a collision, \((m - 1)/m \) don’t
- This is exactly the chance of a collision if \(h(x) \) and \(h(y) \) are chosen randomly from \(\{0, \ldots, m - 1\} \)

Universal hashing is good even if we don’t assume that the inputs are uniformly distributed.
Theorem: If \(h \in \mathcal{H} \) is chosen randomly and is used to hash \(n \) keys into a table of size \(m \), the expected \# of collisions involving \(x \) is \((n - 1)/m \).

Proof: Let \(C_{yz} \) be a random variable (on \(\mathcal{H} \)) such that

- \(C_{yz}(h) = 1 \) if \(h(y) = h(z) \), 0 otherwise

Since \(\mathcal{H} \) is universal, \(E(C_{yz}) = 1/m \)

Let \(C_x \) be the total \# of collisions involving \(x \):

\[
C_x = \sum_{y \neq x} C_{xy}
\]

\[
E(C_x) = \sum_{y \neq x} E(C_{xy}) = (n - 1)/m
\]
Are there universal classes of hash functions? If so, how hard are they to implement?

Not hard, if we assume a known upper bound on key size:

- Let m be prime.

- Suppose k can be written as (k_0, \ldots, k_r) for some r, where $0 \leq k_i \leq r$

- Hash function has form $h_{(a_0, \ldots, a_r)}$, $0 \leq a_i \leq m - 1$

 - $h_{(a_0, \ldots, a_r)}(k_0, \ldots, k_r) = \sum_{i=0}^{r} a_i k_i$

 - There are m^{r+1} such functions

Theorem: This set of hash functions is universal.
Open Addressing

Idea of open addressing:

• all elements are stored in the hash table
• no pointers, no linked lists
• by not having pointers, can afford to have a larger hash table

So where do we put elements if there is a collision?

• Idea: have first choice, second choice, etc.
• Probe the hash table until we find a free slot

Formally, to hash from \(U\) to \(\{0, \ldots, m - 1\}\), consider hash functions of the form:

\[
h : U \times \{0, \ldots, m - 1\} \to \{0, \ldots, m - 1\}
\]

• \(h(k, j)\) is \((j + 1)\)th place to look for/insert key \(k\)
• Want \(h(k, 0), \ldots, h(k, m - 1)\) to all be different
 ○ \((h(k, 0), \ldots, h(k, m - 1))\) is a permutation of \(\{0, \ldots, m - 1\}\)