Augmenting Paths

So how do we find augmenting paths?
Given a flow network G and a flow f, an augmenting path p for f is just a path from s to t in G_f.
- By definition, each edge (u, v) in G_f admits some additional positive net flow from u to v.

What’s the maximum flow that you can push through an augmenting path p?
- Depends on the edge that admits the least flow.
 - A chain is only as strong as its weakest link
- Define the residual capacity of p:
 $$c_f(p) = \min \{c_f(u, v) : (u, v) \text{ on } p\}.$$

Lemma: If G is a flow network, f is a flow in G, and p is an augmenting path in G_f, define
$$f_p = \begin{cases}
 c_f(p) & \text{if } (u, v) \text{ is on } p \\
 -c_f(p) & \text{if } (v, u) \text{ is on } p \\
 0 & \text{otherwise}.
\end{cases}$$

Then f_p is a flow in G_f and $|f_p| = c_f(p) > 0$.
Key point $f + f_p$ is a flow in G, and $|f + f_p| = |f| + |f_p| > |f|$.

Cuts in flow networks

We can use the Ford-Fulkerson method by starting with the a flow of 0 on every node, computing an augmenting path, and updating the flow.
- We keep going until there are no more augmenting paths.

We need to prove that we then have the maximum flow.
To prove this, we use cuts:
- Given a flow network $G = (V, E)$, a cut consists of a partition S and $T = V - S$ such that $s \in S$ and $t \in T$.
 - like a cut in MST, except that $s \in S$ and $t \in T$,
 - and now the network is directed.

So why do we care about cuts?

Why we care about cuts

- If f is a flow, the flow of f across the cut is $f(S, T)$.
- The capacity of the cut is $c(S, T)$.

Lemma: If f is a flow in G with source s and sink t, and (S, T) is a cut of G, then $f(S, T) = |f|$.
- The flow of f across the cut = the value of f

Proof:
$$f(S, T) = f(S, V) - f(S, S) = f(S, V) = f(s, V) + f(S - s, V) = f(s, V) = |f|$$

Corollary: If (S, T) is a cut of G, then $|f| \leq c(S, T)$.
Proof:
$$|f| = f(S, T) = \sum_{u \in S, v \in T} f(u, v) \leq \sum_{u \in S, v \in T} c(u, v) = c(S, T).$$

Key point: If $|f| = c(S, T)$ for any cut (S, T), then f must be a maximum flow.
Max-flow min-cut Theorem: If \(f \) is a flow in \(G \) with source \(s \) and sink \(t \), then the following are equivalent:

1. \(f \) is a maximum flow
2. \(G_f \) contains no augmenting paths
3. \(|f| = c(S, T) \) for some cut \((S, T)\) of \(G \).

Proof: (1) \(\Rightarrow\) (2): if \(G_f \) has an augmenting path \(p \), then \(|f| + |f_p| > |f| \), so \(f \) can’t be a maximum flow.

(2) \(\Rightarrow\) (3): Suppose that \(G_f \) has no augmenting path. We want to show that \(|f| = c(S, T) \) for some cut \((S, T)\). Define

\[S = \{ v \in V : \text{there is a path from } s \text{ to } v \text{ in } G_f \}. \]

Clearly \(t \in T = V - S \) (otherwise there would be an augmenting path in \(G_f \)). Thus, \((S, T)\) is a cut. If \(u \in S \) and \(v \in T \), then \(f(u, v) = c(u, v) \) (otherwise there would be an edge \((u, v)\) in \(G_f \), and \(v \) would be in \(S \)). Therefore, \(|f| = f(S, T) = c(S, T) \).

(3) \(\Rightarrow\) (1): If \(|f| = c(S, T) \), we’ve already seen that \(f \) must be a maximum flow.

Key point: If \(f \) is a flow in \(G \) and \(G_f \) has no augmenting paths, then \(f \) is a maximum flow in \(G \).

Ford-Fulkerson again

Ford-Fulkerson \((G, s, t)\)

1. for each edge \((u, v) \in E[G]\)
2. \(\textbf{do } f[u, v] \leftarrow 0 \)
3. \(f[v, u] \leftarrow 0 \)
4. while there exists a path \(p \) from \(s \) to \(t \) in \(G_f \)
5. \(\textbf{do } c_f(p) = \min \{ c_f(u, v) : (u, v) \text{ is on } p \} \)
6. \(\textbf{for each edge } (u, v) \text{ in } p \)
7. \(\textbf{do } f[u, v] \leftarrow f[u, v] + c_f(p) \)
8. \(f[v, u] \leftarrow f[v, u] - c_f(p) \)

Comments:
- Lines 1–3 initialize \(f \)
- Don’t need to set \(f[u, v] \leftarrow 0 \) unless one of \((u, v), (v, u)\) is in \(E \), since we we never touch these edges.

Edmonds-Karp Algorithm

Use BFS to find the shortest augmenting path.
- Each edge counts as 1.

Claim: The Edmonds-Karp algorithm runs in time \(O(V E^2) \).
- We’ll skip the proof (see pp. 597–598).
- The hard part is showing that using BFS guarantees that we do no more than \(O(V E) \) iterations.
- It’s easy to see that each iteration takes at most \(O(E) \).
- BFS takes time \(O(V + E) \), but \(V \leq E - 1 \), since each vertex is on a path from \(s \) to \(t \) (so each vertex other than \(t \) must have an outgoing edge).

Can find fancier algorithms that run in time \(O(V^3) \) (Section 27.5) and even \(O(V E \log(V^2/E)) \) (the current champ).

Can we do better by choosing a better augmenting path?
Bipartite Matching

Consider a graph partitioned into two sets A and B:
- men and women
- task and machine/person to perform it
- lots of other examples

Model this using a bipartite graph $G = (V, E)$ where
- $V = A \cup B$
- edges go between nodes in A and nodes in B
 - there is an edge between a job and a machine if the machine can perform the job.
 - One machine can perform several jobs
 - One job can be performed by several machines

A matching is a subset M of edges in E such that each vertex has at most one edge in M incident on it.
- Everything is matched with at most one other thing.

A maximum matching has as many edges as possible.
- As many jobs as possible are done; as many machines as possible are working

Lemma: If M is a matching in G, then there is an integer-valued flow f in G' with $|f| = |M|$. Conversely, if there is an integer-valued flow f in G', then there is a matching M in G with $|f| = |M|$.

Proof: Suppose that M is a matching. Define a flow f such that if $u \in A$, $v \in B$, and $(u, v) \in M$, then $f(s, u) = f(u, v) = f(v, t) = 1$ and $f(u, s) = f(v, u) = f(t, v) = -1$; $f(u', v') = 0$ otherwise. It is easy to see that $|f| = M$.

Conversely, given f, let

$$M = \{(u, v) : u \in A, v \in B, f(u, v) > 0\}.$$

Why is M a matching?
- For $u \in A$, at most 1 unit of flow comes in (from s), so at most 1 unit can go out (conservation).
- For $v \in B$, at most one unit can go out (to t) so at most one unit can come in.

Why is $|M| = |f|$?
- $(A \cup \{s\}, B \cup \{t\})$ is a cut of G', so
 $$|f| = f(A \cup \{s\}, B \cup \{t\}) = \sum_{(u,v) \in M} f(u, v) = |M|.$$

- Since f is integer-valued and all capacities are at most 1, $f(u, v) = 1$ for $(u, v) \in M$ and $f(u, v) = 0$ for $(u, v) \notin M$. (Can't have $f(u, v) < 0$, since $f(u, v) \leq c(u, v) = 0$.)

This means that the size of the maximum matching is the same as the largest value for an integer-valued flow.
- So how do we construct integer-valued flows?
- We get one using Ford-Fulkerson!

Lemma: Since all the capacities in G' are integer-valued, the maximum flow in G' is too.

Proof: By induction can show that all the flows in Ford-Fulkerson are integer-valued at every step of the way.

Bottom line: size of maximum matching = value of maximum flow.

There are better methods for maximum bipartite matching:
- Hopcroft and Karp have a $O(\sqrt{V}E)$ algorithm
Dynamic Programming

Dynamic programming is a technique for designing algorithms that’s used in optimization problems.

- Many possible solutions
- Each solution has a value (payoff)
- We want to find the optimal solution (the one with the best payoff)

We can apply dynamic programming to optimization problems if, as choices are made, subproblems with a similar structure arise.

Key steps in using dynamic programming:
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.
4. Construct the optimal solution from the computed information.

Seems pretty mysterious until you see examples . . .

How Many Choices Are There?

With 2 matrices: 1 choice.

With 3 matrices: 2 choices

\((A_1A_2)A_3\) or \(A_1(A_2A_3)\)

With 4 matrices: 5 choices

\((A_1((A_2A_3)A_4))\)

\((A_1(A_2(A_3A_4)))\)

\(((A_1A_2)(A_3A_4))\)

\(((A_1A_2)A_3)A_4\)

\(((A_1(A_2A_3))A_4\)

In general, if \(P(n)\) is the number of choices with \(n\) matrices,

- Choose \(k\); figure out all the ways of grouping \(A_1, \ldots, A_k\) and all the ways of grouping \(A_{k+1}, \ldots, A_n\);

\(P(k)P(n-k)\)

- Thus, \(P(n) = \sum_{k=1}^{n-1} P(k)P(n-k)\).

- It can be shown that \(P(n) = \Omega(4^n/n^{3/2})\)

Bottom line: \(P(n)\) is exponential in \(n\); you can’t try all solutions to pick the best one.

Matrix-chain multiplication

Suppose we want to multiply three matrices: \(A_1A_2A_3\). Matrix multiplication is associative, so we have two ways of doing this:

\((A_1A_2)A_3\) or \(A_1(A_2A_3)\)

Both ways give us the same answer. Which is better?

- How much does it cost to multiply an \(n \times m\) matrix by an \(m \times k\) matrix?

\(\circ n \times m \times k\) multiplications

Why this can matter:

- Suppose that \(A_1\) is \(10 \times 100\), \(A_2\) is \(100 \times 5\), and \(A_3\) is \(5 \times 100\).

\(\circ A_1A_2\) uses \(10 \times 100 \times 5 = 5000\) multiplications

\(\circ BA_3\) uses \(10 \times 5 \times 100 = 5000\) multiplications,

where \(B = A_1A_2\) (a \(10 \times 5\) matrix)

\(\star (A_1A_2)A_3\) uses 10,000 muts altogether

\(\circ A_2A_3\) uses \(100 \times 5 \times 100 = 50000\) muts

\(\circ A_1C\) uses \(10 \times 100 \times 100 = 100,000\) muts,

where \(C = A_2A_3\) (a \(100 \times 100\) matrix)

\(\star A_1(A_2A_3)\) uses 150,000 muts

That’s a huge difference!

Matrix Multiplication with Dynamic Programming

Notation:

- \(A_{i,j}\) be the result of multiplying \(A_i \ldots A_j\).

- \(A_i\) is a \(p_{i-1} \times p_i\) matrix.

- \(m[i,j]\) is the number of multiplications involved in the cheapest algorithm for computing \(A_{i,j}\).

Clearly \(m[i,i] = 0\).

Claim: If \(j > i\), then

\[
m[i,j] = \min_{i \leq k < j} (m[i,k] + m[k+1,j] + p_i p_k p_j)
\]

Key point:

- This tells us the structure of the optimal solution.

- We get a recursive definition of the optimal solution, obtained by solving similar subproblems.
Could write a naive recursive algorithm based on the claim:

- **Problem**: this still takes exponential time.

A better way:

- Write a table whose entries are $m[i,j]$
 - There are only $n^2/2$ entries in the table.
 - We compute them inductively, starting with all entries where $i - j = 0$, then $i - j = 1$, $i - j = 2, \ldots$