
CS 404: Lab 6: Parallelizing RAD1D

Getting Started

1. Log in to a collaboratory machine.

2. Open a web browser and go to the course website1. Download RAD1Dmp.zip
and save it in your home directory (h:\Users\userid). You may also
copy it from my home directory: H:\Users\ajp.

3. Double click on the file to extract. This will create a directory called
RAD1Dmp with three subdirectories: source contains the source for
RAD1Dmp, scripts contains sample .bat scripts, and results is an empty
directory where your results will go. The goal of this lab is to evalu-
ate the performance of RAD1Dmp as we run it on more and more
processors.

Building RAD1Dmp

1. First, we need to build the executable, and we’ll do it with VizStudio.
Launch VizStudio and create a new “Win32 Console Application” in
the RAD1Dmp directory. I named mine “rad1mp,” and I’ll assume
you did as well. Add the contents of RAD1D\source to the project.
Be sure to add the files for the microsecond timers (hrpc.h and hrpc.c)
which are located in the timers directory.

2. In addition to the timers, I’ve added two new files: commlib.c and
commlib.h. These files contain the main parallel routine Update, which
shares data between the processors. Update uses the same communica-
tion algorithm we developed on Monday with the cookies. There is also
a modified version of GetInitialCond that gets the section of initial data
needed by processor P . The parallel-specific sections of code are turned
on and off by setting the PARALLEL flag in commlib.h (#define PAR-
ALLEL turns the PARALLEL code on, #undef PARALLEL turns it
off). Look through main. See if you can figure out what’s happening in
the parallel sections. We will be making both parallel and serial runs,
so turn PARALLEL off and build the executable (rad1mp.exe–it will

1www.cs.cornell.edu/Course/cs404/2002sp

1

be in rad1mp\Debug directory). Change the name of rad1mp.exe to
rad1ser.exe.

3. Now, let’s build the parallel version. First, turn PARALLEL back on.
Under the “Build” menu, select “Rebuild All” to force VizStudio to
recompile everything. What happens? We have two problems: VizS-
tudio doesn’t know where to find the header file for the MPI library,
and it doesn’t know where to find the .lib file. We need to change these
in the “Settings” panel. Select “Settings” from the “Project Settings”
menu to bring up the panel. Click on the “C/C++” tab. From the
“Category” menu, select “Preprocessor” to bring up the options for the
C-preprocessor. Add C:\Program Files\MPIPro\include to the “Addi-
tional Include Directories” field; this is the location of mpi.h. Now, click
on the “Link” tab and select the “Input” category. Add MPIPro.lib
to the “Object/Library Modules” line. This tells VizStudio to link to
the MPIPro library (analogous to -lMPIPro). Then type C:\Program
Files\MPIPro\lib in path field. This adds the MPIProbs directory to
the list of directories VizStudio will search (analogous to the -L flag).
Click OK and build the executable.

Running Interactively

1. We will now run both the serial and parallel versions of RAD1D on Ve-
locity. Velocity nodes are requested using the Cluster CoNTroller batch
System (CCS) by submitting a .bat file. A .bat file is simply a series of
DOS commands. Commands for CCS are specified as comments (lines
starting with REM) followed by “CCS.” All .bat files must specify five
things: the account (userid), the type (batch or interactive), the num-
ber of nodes, the job requirements (allows you to choose the type of
nodes you want), and the number of minutes you’re requesting. Open
interactive.bat (VizStudio is a good choice, you could also use WordPad
or NotePad). This is a simple .bat file that requests a single node from
the “development” pool (2-way Pentium machines set aside for short
running jobs). The job is set to “interactive.” The only real difference
between interactive and batch is that in batch-mode, CCS will execute
the .bat file on the first node allocated for the project. Edit your copy
of interactive.bat, replacing my userid with yours. Then, open a com-
mand prompt and cd into the scripts directory. To send the .bat file to

2

CCS, type “ccsubmit interactive.bat.”

2. Your job is now in the job queue. Jobs go through four states: waiting
(CCS is trying to find nodes that meet your needs), starting (CCS
is gathering the nodes you requested and setting them up for your
exclusive access), running (you can run your commands), and clearing
(you’ve released your nodes and your time has expired–CCS is logging
you out). To see the queue, type “ccq.” Find your job (look for your ID
on the left). Your job’s state is indicated by a single letter (W,S,R,or
C). What state is your job in? Keep checking ccq until your job begins
running. When your job is running, the last column of ccq is the master
node for your job.

3. You now have exclusive access to one development node; however, since
you asked for an interactive job, nothing is happening on the node. You
need to log on to that node and do your work. To do this, type “telnet
ctcdevXX” where XX is replaced by the number of the node indicated
in ccq. You are now on your node, any commands you enter will be
run on that machine.

4. First, we need to get the data and executables on to the local drive
for this machine (reading and writing from a local drive is much faster
than using the shared H: drive). Enter the following commands (don’t
type the italicized notes), substituting your userid for mine:

> t: Changes drives to the local t: drive
> mkdir ajp Creates a directory named after you
> cd ajp You are now in the directory
> copy h:\Users\ajp\RAD1Dmp\rad1mp\Debug*.exe . Copies the
executables
> copy h:\Users\ajp\RAD1Dmp\xlarge.cmnd . Copies the command
file
> copy h:\Users\ajp\RAD1Dmp\Cxl.txt . Copies the initial condition
file

5. You’re now ready to run. To run in serial, type “rad1ser.exe xlarge.cmnd.”
This will output the usual Cfinal.txt and a file called Time 1.txt con-
taining the amount of time spent setting up the program and the av-

3

erage time for each iteration. To check the time values, type “more
Time 1.txt.” Write down the second number.

6. To run in parallel, you must use the mpirun command. This command
takes a program, and starts several copies of it, allowing them to refer to
each other through MPI calls. However, before we can use mpirun, we
need to tell it which machines to run on (it doesn’t communicate with
CCS, so it doesn’t know!). CTC has created a program that figures out
which nodes CCS gave you and creates a file called “machines” that
mpirun needs. Thus, to run RAD1D on two processors, type:

> call machinemaker Creates machines
> mpirun -np 2 rad1mp.exe xlarge.cmnd

For a few seconds, it will appear that nothing is happening. Then, all of
a sudden, you will see all of the output from RAD1D. Type “dir” to list
the contents of your directory. In addition to the inputs, executable,
and the outputs from the serial version, you should see three files from
the parallel version: Cfinal.txt.0 (the concentration at the first 50,000
grid points), Cfinal.txt.1 (the concentration at the second 50,000 grid
points), and Time 2.txt. Look at the new time file, is the parallel
version faster? Write down these times.

7. Now, you need to move the output back to your results directory and
delete your files from t:

> copy *.* h:\Users\ajp\RAD1Dmp\results Copies everything to h:
> del *.* Deletes everything

8. Lastly, you need to let CCS know that you’re done, so you don’t get
charged for minutes you’re not using. Type “ccrelease” to release your
node, and then “exit” to quit telnet.

Running in Batch

1. Running interactively is necessary when you are developing your ap-
plication and is a good way to learn the system. Once you’ve got your

4

program working, you want to automate it as much as possible: you
want to run in batch mode. A .bat for a batch job must set up the
same CCS parameters as an interactive job (type should now be set
to batch), and you need the DOS commands to set-up and run your
program. These DOS commands will look exactly like the commands
you entered interactively. I’ve provided a sample batch script called
MPsample.bat. Open it up and take a look. The beginning of the file
sets the CCS parameters. The next section sets some DOS variables.
These function like a macro in a Makefile or a variable in a program–
they allow you to change how the program runs with minimal typing
(and hopefully, fewer errors). The value of USR and NODES should
match the CCS account and nodes variables. The variable PROCS is
the number of processes to start (some multiple of NODES), EXEC is
the name of the executable, INPUT is the name of the input file, and
SETSCR and CLNSCR are the names of two additional scripts: one to
copy the data onto the T drive, and the other to copy the results back
to H. You’ve been assigned a number of nodes and processors to run.
Change the appropriate variables (don’t forget to change the account,
and make sure you are requesting development nodes).

2. You will also need to make some changes in the set and clean scripts.
Make sure that these are set to point towards your files (change the
USR variable), and the variables that point to the directories and files.

3. Now, submit your job to CCS by typing “ccsubmit MPsample.bat.”
Check the queue periodically to follow its progress. When the job
starts, a message will appear on your screen (the result of the “net
send” commands in the .bat file). You will also get messages when
rad1mp starts and when it is finished. When it completes, check your
results directory to see if your answers are there. Look at the timing
file (Time N P.txt where N is the number of nodes you used and P is
the number of processes), and write down your answer. Give the times
from your three runs to me.

4. If time permits, repeat your run using the large.cmnd file (and Cl.txt).
You will have to change the name of the input file in both MPsam-
ple.bat the MPsamp set.bat and the name fo the data file in MP-
samp set.bat. Check the time and give it to me.

5

