Outline

e Announcements

- HWII due Today

- HWIII due Monday

- Wed. and Fri. in 484 Rhodes
e Parallel Computers
e Types of Parallelism
e Message Passing with MPI
e Parallelizing RAD1D

Basic Idea of Parallel
Computing

¢ If you have N computers
- Divide your problem into N pieces
- Give each piece to its own computer
- Solve your problem N-times faster

Parallel Computers

e 2-4 processor workstations are
becoming common

e Sun, SGI make systems with up to 32
processors

e Research systems:
- Up to 9632 processors!




Parallel Computers

e Symmetric Mutli-Processors (SMP)
- Several processors sharing same memory
- Ex: 2x Dell Workstation, 32x SGI Origin
¢ Distributed Memory
- Several independent machines linked by a network
- Ex: “Beowulf” cluster
e Hybrid Systems

- Several machines linked over network, each machine
is SMP

- Ex: Cornell’s Velocity, ASCI White

Using Parallel Computers:
Easy Way

o If your problem involves applying a
simple model to several different data
sets
- Distribute data among machines
- Run the program
- If it takes T seconds to run on 1 machine

* Your problem will run in T/N seconds plus time to
distribute data (D)

Speed-Up

¢ Parallel performance is commonly
measured as speed-up:
= S(N)=Ty/Ty
- Ideal case: Ty=Ty/N, then S(N)=N
- Easy parallelism
e Ty=T/N + D
o If D is small, S(N) is very close to N




Hard Parallelism

¢ You have a single very large problem
- large in memory or time
e To parallelize:
- you must divide your problem (data or
program) into pieces
- But, pieces are not independent

e computers must share data
* you must determine what data to share and when

Example:

e Computing d2C/dx? DE]

o o o o o o o o
V[i-11 V01 V[i+1]
L R

o for(j=0;j<M;j++){
- L=V[j-1] or V[M-1]
- R=V[j+1] or V[0]
- D[jl=(R-2V[j]1+L)/dx/dx

° 3}

Computing d2C/dx?

¢ Divide domain into 2 pieces of length
M/2 DIj]

o O @ O O O OO
V[i-11 Vil V[J';l]

L
o for(j=0;j<M/2-1;j++){
- L=V[j-1] or V[M/2-1] on neighbor
- R=V[j+1] or V[0] on neighbor
- D[jl=(R-2V[j]+L)/dx/dx




Computing d2C/dx?

e Ty=T,/N + 2*N*C, where C=time to
send a double

e S(N)=T,/(T,/Ty+2NC)

. = N/(1+2N2C/T,)

e Let T1=MBC, M=grid points, B
=compute/communicate

e S(N)=N/(1+2N2?/(MB))

Amdahl’s Law of Parallel

Processing
e Increasing N will reduce
M=10,00 speed-up
p=0 - There’s a limit to parallel
performance

e Increasing M will
improve speed-up
- Parallel is more attractive
for big problems
e Increasing B will
improve speed-up
- Hardware is critical

Message Passing with MPI

e We need a way to share data

e Message Passing Interface (MPI)
- library for communication
- device independent
¢ same MPI code will run on cluster or SMP
- well-specified, so very portable
- versions available for all systems
e MPICH, LAM are free




Using MPI

e First, set it up:
- MPI_Init(&argc, &argv);
e Starts MPI
- MPI_Comm_rank(MPI_COMM_WORLD, &P
)o Gets “rank” of this job--processor number
- MPI_Comm_size(MPI_COMM_WORLD, &N );

* Gets number of jobs

Using MPI

¢ Point-to-Point Communication
- MPI_Send(ovec, 10, MPI_DOUBLE, 1, tag,
comm)
e Sends 10 doubles in array ovec to process 1
* tag is a message label

e comm is a communicator--a subgroup of
processes (MPI_COMM_WORLD is everyone)

- MPI_Recv(ivec, 10, MPI_DOUBLE, 0, tag,
comm, &status)
* receives 10 doubles from process 0
* status may contain error info

Point-to-Point
Communication

e For every send, there must be a receive
e Send waits until Recv is posted & vice-
versa
- Called blocking
¢ Allows for the possibility of deadlock

- Recv’s waiting for Sends that will never be
posted




Collective Communication

e Sometimes, you need to send data to
all processes
e Ex: Computing sum of an array
- Each processor computes the sum of its
array
- The partial sums must be added together
and answer distributed to everyone
- MPI_Allreduce(&locsum, &allsum, 1,
MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

Parallelizing RAD1D

e Divide domain among N processors
- Each proc gets M/N grid points

7 0 1 2 3 4 5 6

Proc P # Global #
Y M/N*P+0 Need a subroutine to

1 M/N*P+1 get last two entries
R from neighbors

M/N-1 M/N*(P+1)-1
M/N M/N*(P+1)
M/N+1 M/N*(P)-1

Parallelizing RAD1D

e Each proc will get N and P
e Each proc will read inputs, taking what it
needs
e Compute as usual (m=M/N) updating arrays
with communication routine as needed:
Update(C,m,P,N);
for(j=0;j<m;j++){
left=j-1; if(j==0){left=m+1;}
right=j+1;
RHS[j]=C[j]+0.5*lambda[j]*(C[right]-C[left]);

¥
Update(RHS,m,P,N);




Parallelizing RAD1D

Update(Arr, m, P, N);

if(N is odd){Error}
left=P-1; if(left<0){left=N-1;};
right=P+1;if(right==N){right=0;}
if(P is odd)
MPI_Send(&Arr[0], 1, MPI_DOUBLE, left, MPI_ANY_TAG,
MPI_COMM_WORLD);
MPI_Recv(&Arr[m+1],1, MPI_DOUBLE, left, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);
MPI_Send(&Arr[m-1], 1, MPI_DOUBLE, right, MPL_ANY_TAG,
MPI_COMM_WORLD);
MPI_Recv(&Arr[m],1, MPI_DOUBLE, right, MPI_ANY_TAG,
MPI_COMM_WORLD ,&stat);
else
MPI_Recv(&Arr[m],1, MPI_DOUBLE, right, MPI_ANY_TAG,
MPI_COMM_WORLD ,&stat);
MPI_Send(&Arr[m-1], 1, MPI_DOUBLE, right, MPL_ANY_TAG,
MPI_COMM_WORLD);
MPI_Recv(&Arr[m+1],1, MPI_DOUBLE, left, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);
MPI_Send(&Arr[0], 1, MPI_DOUBLE, left, MPI_ANY_TAG,
MPI_COMM_WORLD);




