
CS 404: Lab 5: Adding Graphics with OpenGL

Getting Started

1. Boot into Linux. To do this, click on “shutdown” and then select
“restart.” The computer will begin restarting. You will eventually
have the option to select either Win2K or Linux (use up and down
arrows to switch, press enter to select).

2. Open a web browser and go to the course website1. Download RAD1Dgl.tar.

3. To unpack the tar-file, type tar xvf RAD1Dgl.tar in a terminal window.
Cd into the directory “RAD1Dgl.”

Adding Graphics to RAD1D

1. Open the Makefile. RAD1Dgl calls GLUT and OpenGL routines. To
get the code to compile, we need to use the -I option to tell the compiler
where to find the header files for GLUT and OpenGL. We also need to
set the LIBPATH to point to /usr/X11R6/lib (the library files for the
X-Window system, Version 11, Release 6). Look at all the libraries! If
our code only calls GLUT (libglut.a) and OpenGL (libGL.a), then why
must we call so many libraries?

2. Type make to build rad1dgl. When you run it, it will ask you for
the usual command file, plus the number of time samples you want.
Choosing “medium.cmnd” and “100” produces nice results. You may
also specify both the file and number of samples on the command line
(rad1d medium.cmnd 100). Run it a few times, play around with the
parameters in the command file. Does adding graphics help you un-
derstand the meaning of the various parameters?

3. Now we’ll see how it all works. Open main.c in an editor and scroll
down to the subroutine main (at the bottom). Most of the subroutines
called in main are in the GLUT library (they start with “glut”). I
won’t go into all of the options available for these calls, but will try
to point out the general ideas. The first call, glutInit, tells GLUT
to start up, and the second, glutInitDisplayMode, tells GLUT which

1www.cs.cornell.edu/Course/cs404/2002sp

1



graphics model we want. GLUT RGB and GLUT DEPTH are the two
simplest possibilities. Another possibility is GLUT DOUBLE which
“enables double-buffering,” a graphics model used for animation. After
we set up GLUT, we create a window by describing its initial size
and position. We then register the two callback functions: DrawC for
general drawing, and ResizeIt to handle window resizing. We then call
the routine InitGL (in GLout.c) which initializes OpenGL. InitGL sets
the background color of the window to black and sets-up a standard
view for 2D data. Finally, we call RAD1D, and when it finishes, we
turn control over to GLUT by calling glutMainLoop. This is all pretty
standard stuff. The best way to get started with OpenGL and GLUT
is to find some sample code (like this, or check out www.opengl.org)
and change it to fit your needs–that’s what I did!

4. Scroll up and look at RunRad–it should look familiar. Find the start
of the main while-loop. At the start of every iteration, RunRad checks
whether it is time to sample C. If it is, it calls the function AddSample
(in GLout.c). Where is the data stored? Which routines do you think
can access this data? Does this seem like good programming?

5. From the point of view of GL, RunRad’s only purpose is to get data
for the plot. Look at DrawC in GLout.c. DrawC takes our data and
plots C(x, tj) vs. x at several time levels. The outer for-loop iterates
over the available time samples. For each one, we pick a color by giving
levels of red, green, and blue to the OpenGL routine glColor3f. Color
levels range from 0.0 to 1.0. We then tell OpenGL that we’re going to
plot a series of line segments. The points are placed using glVertex2d.
When all the points are placed, we tell OpenGL we’re done with the
line. How are the points specified? What do A, B, C, and D do?

6. It is tempting to think that DrawC produces some static picture. Put a
print statement inside DrawC (something like printf(”In DrawC\n”);)
to let you know when you’ve entered that routine. Rebuild and run.
Trying moving the graphics window around, minimizing it, moving
other windows in front of it, etc. When does DrawC get called?

2


