
1

OutlineOutline

• Announcements
– HWI due on Friday

• Differences between FORTRAN and C
• Calling FORTRAN from C

Comparing C and FORTRANComparing C and FORTRAN

FORTRANFORTRAN

• FORmula TRANslator
– One of the first programming languages
– Most common strain was standardized in 1977
– Designed for “Scientific Computing” (e.g. physics)
– complex type fully implemented, integrated
– lots of legacy code
– simple
– fast!

2

• F77 is ancient
– Missing “modern” features like pointers, novel data

structures (or even records)
– Missing not-so-modern features like recursion!
– Encourages bad programming:

• heavy use of goto-statement
• common blocks

FORTRAN: DisadvantagesFORTRAN: Disadvantages

• In many ways, C is similar to FORTRAN
– Procedural
– few built-in types and data structures

• But more modern
– pointers--allows you to manipulate memory directly
– structs--allows you to implement records
– Together, pointers and structs allow you to create

new data structures
– supports recursion
– can do everything you could ever want to do (math, CS,

graphics)

CC

C: Key disadvantagesC: Key disadvantages

• Programming with pointers can be complicated
and even dangerous

• No complex type or functions
• LESS LEGACY CODE!

– Calling this old code from C would allow us to have
the best of both worlds!

3

Calling FORTRAN from CCalling FORTRAN from C

• In theory, we should be able to
– Compile FORTRAN code to object code (-c option)
– Compile C code to object code
– Link objects together

• However, there are a few wrinkles:
– Namespace problem

• C needs to refer to the routines using the correct names
• ANSI C code needs prototypes

– Call-by-value problem
• C can use call-by-value, FORTRAN uses only call-by-reference
• In general, need to make sure we’re sending the FORTRAN

routines the type of data they expect

Namespace ProblemNamespace Problem

• The section of a .o file for a specific routine is
given a name.

• The name is used by the linker to figure out
how the executable is put together

• We must ensure that calls to FORTRAN
routines in C object code use the same name
as in the FORTRAN .o file

Namespace ProblemNamespace Problem

• Routine FooBar in a FORTRAN .o file could be
– FooBar_
– FOOBAR_
– foobar_ (g77)

• To call FooBar from C, you will need to use the
correct case and add the underscore
– Some compilers provide a -f option which forces the

names in the .o to be all lower case

• CAUTION: Every system/compiler is different!
Read the documentation!

4

Call-by-Value ProblemCall-by-Value Problem

• In C, a variable can be passed to a subroutine
by value or reference.
– call-by-value: the number stored in the variable is

passed to the subroutine. The value in the calling
routine WILL NOT CHANGE!

• int m = 4
• Foo(m); /* m won’t change */
• prototype for Foo:

– void Foo(int m);

– call-by-reference: the memory address is passed. If
the subroutine modifies the value, the value WILL
CHANGE in the calling routine.

• Use “&” to pass a scalar by value:
– Foo(&m) /* m might change */
– prototype for Foo:

» void Foo(int *m); /* “*”==pointer */
• Arrays are already pointers, so they are automatically

passed by reference:
– int m[10],tot;
– tot=SumArray(m,10);
– prototype for SumArray:

» int Foo(int *m, int n); /* n=length(m) */

Call-by-reference:Call-by-reference:

Type EquivalencesType Equivalences

struct dcomp{
 double real;
 double cmplx;
};struct dcomp c;

complex *16 c

doubledouble (real *8)

floatreal (real *4)

intinteger (integer *4)

char c[n]character*n c

CFORTRAN

5

• 1D arrays of equivalent type are represented
identically by C and FORTRAN
– not true for multidimensional arrays

Multidimensional ArraysMultidimensional Arrays

654

321

6

5

4

3

2

1

6

3

5

2

4

1

A=

C: Column-major FORTRAN: Row-major

