
CS 404: Lab 3: Calling FORTRAN from C

Getting Started

1. Boot into Linux. To do this, click on “shutdown” and then select
“restart.” The computer will begin restarting. You will eventually
have the option to select either Win2K or Linux (use up and down
arrows to switch, press enter to select).

2. Open a web browser and go to the course website1. Download RAD1Ditpack.tar.

3. To unpack the tar-file, type tar xvf RAD1Ditpack.tar in a terminal win-
dow. Cd into the directory “RAD1Ditpack.”

Calling FORTRAN from C

1. RAD1Ditpack contains the source code for simulating 1-D reaction-
advection-diffusion problems with periodic boundary conditions. This
is essentially the model-problem from CS403 with some slight modifi-
cations2. As originally constructed, RAD1D solves for diffusion using
an implicit scheme. Computationally, this means that we have to solve
a system of linear equations:

A ∗ C = RHS

for each time step. The matrix A has several important properties, chief
among them, that it is sparse (most entries are zeros) and symmetric
(the lower triangular portion is a mirror image of the upper triangular
portion, or mathematically, A(i, j) = A(j, i)). Because A is sparse,
we can save a tremendous amount of memory by only tracking the
locations where A 6= 0 rather than storing all of the zeros. If n is the
number of rows in A, then storing A as a full 2D array would take
8n2 bytes. Since there are only 3n nonzero elements, we can reduce
the memory requirements to 24n bytes plus an additional 16n bytes
for the integer arrays needed to remember where A is nonzero. This is
what the original RAD1D did. Because A is symmetric, we can further

1www.cs.cornell.edu/Course/cs404/2002sp
2Check out www.cs.cornell.edu/Courses/cs403/Lecture08/note.html for more info on

RAD1D

1



reduce the storage requirements by only storing the upper triangular
portion of A. I’ve modified main.c and the routine BuildA in linalg.c
to only store the nonzeros in the upper triangular portion. Take a look
if you’re interested.

2. Unfortunately, the routine to solve Ac = b in the original version (pcgm
in linalg.c) requires every nonzero entry in A to be represented. Per-
haps more unfortunately, to use the routines in LAPACK with this
problem, we would have to represent the entire upper triangular por-
tion of A–both zeros and nonzeros. In order to take advantage of
A’s sparsity and symmetry, we need a new solver. Going through the
GAMS tree, I found the package ITPACK which provides a variety of
routines for solving sparse linear systems. The only problem: ITPACK
is in FORTRAN, and RAD1D is in C, so we need to figure out how to
call ITPACK from our C code. After reading the ITPACK documen-
tation (a PDF version is on the course web site), I figured out that we
need to call two functions: DFAULT which places the default parame-
ters into two arrays IPARM and RPARM (integer and real parameters,
respectively), and JCG which solves our system of equations using the
“conjugate gradient method with a Jacobi preconditioner.” I have re-
placed the call to the original pcgm routine (in SolveA in linalg.c) with
calls to ITPACK, and I have also allocated the workspace arrays re-
quired by JCG (WKSP and IWKSP) and set the length of these arrays
(NW). Your job is to get the calls to DFAULT and JCG to work. How-
ever, rather than talk you through it step-by-step as I usually do, I will
only give you a checklist of things to do:

2



Key Description

1. Call-by-value Make sure all variables are called by reference (are
either arrays or pointers) rather than by value.
Remember, the reference to a C variable is ob-
tained with the & operator: foo–value of variable
foo, &foo–memory address (reference) of variable
foo

2. Case Most FORTRAN compilers (including g77 make
all variables and function calls lower case; if they
don’t you can usually force everything lower case
with a compiler option (usually -f). For every-
thing to link correctly, you must call FORTRAN
routines using a lower case name.

3. Underscore Most FORTRAN compilers append an underscore
(“ ”) to each subroutine name. For everything to
link correctly, you may need to add the underscore
the subroutine call in the C program.

4. Prototype Strict ANSI C requires you to provide a proto-
type for every subroutine. The prototype gives
the return type of the subroutine (void, if no val-
ues are explicitly returned), subroutine name, and
the types of each variable. You need to provide
prototypes for both DFAULT and JCG. There’s
a special “FORTRAN prototype” section at the
top of linalg.c

3. When you think you’ve made the changes in linalg.c, you’re ready to
build the executable. I’ve modified the Makefile to compile the IT-
PACK routines in dsrc2c.f to dsrc2c.o. Typing “make” should create
all of the objects and attempt to link them using f77. Why do we link
with f77 rather than gcc? If you made the right changes in SolveA,
rad1d should build correctly. You can run the problem by typing rad1d
basic.cmnd (basic.cmnd is a “command” file that specifies the parame-
ters for the simulation–see the online description for more details).

3


