Outline

- Announcements
- Add/drop today!
- HWI due Friday
- Discrete Approximations
- Numerical Linear Algebra
- Solving ODE's
- Solving PDE's

Discrete Approximations

- The defining principle of numerical computing:

Computers are finite

- This has several consequences:
- Computers can only hold a finite amount of data (limited by memory)
- Computers can represent integers exactly, but only over a finite range

Finite Memory Problem

- Because we can only store a finite amount of data, continuous curves or surfaces must be approximated by storing values at a finite number of points
- This leads to discretization errors
- Can improve the approximation by
- adding more points
- tracking higher-order properties (e.g. splines)

Finite Precision Problem

- Computers only work with integers
- To represent a real number, we use two integers:
$- \pm \mathrm{m}^{*} \mathrm{~b}^{\text {p }}$
- m="mantissa"
- b=base, set by the system
- $p=$ exponent
- Limited precision in both mantissa and exponent
- Leads to roundoff errors

Finite Precision Problem

- Suppose we are working with base 10 numbers, and mantissa and exponent have 2 digits:
- \pm xx $10^{\text {y }}$
- smallest number: $1 * 10^{-99}$
- $0.5^{*} 1^{*} 10^{-99}=$??? --Underflow
- largest number: 99*1099
- 2* 99*1099 = ??? --Overflow
- Only 99 numbers in each decade
- Only 200*99-1=19,799 numbers!

Finite Precision Problem

Precision	Bytes	m (bits)	eps	p (bits)	range
Single	4	24	$1 \mathrm{e}-7$	8	$10^{ \pm 38}$
Double	8	53	$1 \mathrm{e}-16$	11	$10^{ \pm 308}$

Numerical Analysis

- The study of algorithms for mathematical problems \qquad
- concerned with
- accuracy
- stability
- performance
\qquad
\qquad
\qquad
\qquad

Numerical Analysis

- Three big areas (i.e. physics)
- Linear algebra
- ODE's/PDE's
- Optimization problems
- Other topics
- Computational geometry
- Numerical integration

Numerical Linear Algebra

- Linear Systems
- Matrix Factorizations
- Eigenproblems

Solving Linear Systems

$$
\begin{aligned}
2 x+3 y & =a \\
1 x+5 y & =b \\
{\left[\begin{array}{ll}
2 & 3 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Solving Linear Systems

$\left[\begin{array}{ll}2 & 3 \\ 1 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$
$\left[\begin{array}{cc}2 & 3 \\ 0 & 7 / 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}a \\ b-a / 2\end{array}\right]$

Gaussian Elimination

- This procedure is known as "Gaussian Elimination"
- for $\mathrm{j}=1$:m-1

1. Divide row j by its jth entry
2. Subtract row j from rows $\mathrm{j}+1$ through m

Gaussian Elimination

- GE is also known as "LU factorization" - $A=L U$ where L is lower triangular, U is upper triangular
- Ax=b
- LUx=b
- Solve Ly=b for y, then $U x=y$ for x

$$
\begin{aligned}
L & =\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1
\end{array}\right] \\
U & =\left[\begin{array}{cc}
2 & 3 \\
0 & 7 / 2
\end{array}\right]
\end{aligned}
$$

A Problem with GE

$\left[\begin{array}{cc}10^{-20} & 1 \\ 1 & 1\end{array}\right]$
$\left[\begin{array}{cc}1 & 10^{20} \\ 0 & 1-10^{20}\end{array}\right]$

- 1-10 $0^{20--B i g ~ n u m b e r-s m a l l ~ n u m b e r ~}$
- difference is less then EPS
- round to - 10^{20}
- could lead to large errors
- Solution: pivot rows
\qquad
\qquad
- Bigger $\Delta \mathrm{t}$ means we can get solution in fewer steps, but
- If Δ t is too big, then solution will be inaccurate

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ODE/PDE

- Solutions involve a trade-off between
- simple computation/small Δt
- expensive computation/big $\Delta \mathrm{t}$
- includes implicit methods, which involve solving linear systems

Principal Components

- Example: Temperature in NW Atlantic

Principal Components

Principal Components

$\mathrm{Cov}=1 /(\mathrm{m}-1) * \mathrm{C}^{\top} * \mathrm{C}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principal Components

\qquad
\qquad
\qquad
\qquad
\qquad

