Outline

- Announcements - Add/drop today!
 - HWI due Friday
- Discrete Approximations
- Numerical Linear Algebra
- Solving ODE's
- Solving PDE's

Discrete Approximations

• The defining principle of numerical computing:

Computers are finite

- This has several consequences:
 - Computers can only hold a finite amount of data (limited by memory)
 - Computers can represent integers exactly, but only over a finite range

- Can improve the approximation by

 - adding more points
 tracking higher-order properties (e.g. splines)

Finite Precision Problem

- Computers only work with integers
- To represent a real number, we use two integers:
 - ±m*b^p
 - m="mantissa"
 - b=base, set by the system • p=exponent
 - Limited precision in both mantissa and exponent
 - Leads to roundoff errors

Finite Precision Problem

- Suppose we are working with base 10 numbers, and mantissa and exponent have 2 digits:
 - $\pm xx \ 10^{yy}$
 - smallest number: 1*10⁻⁹⁹
 - 0.5* 1*10⁻⁹⁹ = ??? --Underflow
 - largest number: 99*10⁹⁹
 2* 99*10⁹⁹ = ??? --Overflow
 - Only 99 numbers in each decade
 - Only 200*99-1=19,799 numbers!

Finite Precision Problem

Precision	Bytes	m(bits)	eps	p(bits)	range
Single	4	24	1e-7	8	10 ^{±38}
Double	8	53	1e-16	11	10 ±308

Numerical Analysis

- The study of algorithms for mathematical problems
- concerned with
 - accuracy
 - stability
 - performance

Numerical Analysis

- Three big areas (i.e. physics)
 - Linear algebra
 - ODE's/PDE's
 - Optimization problems
- Other topics
 - Computational geometry
 - Numerical integration

Numerical Linear Algebra

- Linear Systems
- Matrix Factorizations
- Eigenproblems

Solving Linear Systems

$$\begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 \\ 0 & 7/2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b-a/2 \end{bmatrix}$$

- This procedure is known as "Gaussian Elimination"
- for j=1:m-1
 - 1. Divide row j by its jth entry
 - 2. Subtract row j from rows j+1 through m

- GE is also known as "LU factorization"
 - A=LU where L is lower triangular, U is upper triangular
 - Ax=b
 - LUx=b
 - Solve Ly=b for y, then Ux=y for x

$$L = \begin{bmatrix} 1 & 0 \\ 1/2 & 1 \end{bmatrix}$$
$$U = \begin{bmatrix} 2 & 3 \\ 0 & 7/2 \end{bmatrix}$$

ODE/PDE

ODE/PDE

- Solutions involve a trade-off between
 - simple computation/small Δt
 - expensive computation/big Δt
 - includes implicit methods, which involve solving linear systems

