
CS 404: Lab 1: Finding Libraries

Getting Started

1. Boot into Linux. To do this, click on “shutdown” and then select
“restart.” The computer will begin restarting. You will eventually
have the option to select either Win2K or Linux (use up and down
arrows to switch, press enter to select).

2. Open a web browser and go to the course website1. Download Fpca.tar.

3. To unpack the tar-file, type tar xvf Fpca.tar in a terminal window. Cd
into the directory “Fpca.”

BLAS and LAPACK

1. Fpca contains three FORTRAN files (main.f, subs.f, and system.f) and
a Makefile. Open these files in an editor and have a look. The three
code files implement a statistical technique known as “principal com-
ponent analysis” (PCA). The goal of PCA (also known as “empiri-
cal orthogonal functions” analysis) is to reduce the dimensionality of
the data set. Specifically, PCA determines from multiple observations
of k variables how the variables are related and assigns each variable
a weight. By scaling each variable by its weight and adding them
together, we can produce a one-dimensional approximation of our k-
dimensional data. This approximation, known as the “first principal
component” or “leading mode” represents a pattern common in several
of the variables, and hopefully, it explains a large percentage of the total
variance in the system. Although we’re typically most interested in the
leading mode, it is possible to partition the variance among additional
modes, each representing successively less variance.

Although PCA sounds complicated, it is simple to compute using tools
from linear algebra. Given an array of data, C with each column repre-
senting a variable and each row representing a sample, we first need to
compute the covariance matrix Cov. The covariance matrix is defined

1www.cs.cornell.edu/Course/cs404/2002sp

1



using matrix multiplication:

Cov =
1

m− 1
CT C

where m is the number of observations and the superscript T indicates
the transpose of the matrix. We then need to compute the eigenvectors
and eigenvalues of Cov. The eigenvectors are the principal components
(the weights), and the eigenvalues indicate the amount of variance ex-
plained by each component.

The PCA algorithm is implemented in the three FORTRAN files: main.f
is the main program, subs.f contain subroutines for reading and writ-
ing data and producing the covariance matirx, and system.f contains
some utility routines. The first thing that main does is asks you for
a data file, which is then read in the ReadData routine. The data is
stored as a column of numbers. The first number is the number of
samples (n), the second is the number of variables (m), and the next
n numbers are the first column of data (variable one), followed by the
samples for the remaining n − 1 variables. The data is stored in the
array C. The covariance matrix is constructed in the routine GetCov.
The covariance matrix is then saved to the file Cov.txt. The eigenval-
ues/vectors are computed using the LAPACK routine SSYEV (Single
precision, SYmetric EigenValue). The eigenvalues and the percentage
of the variance which they explain are printed to the screen, and the
prinicpal components are stored in the file PComp.txt.

2. Whew! Don’t worry about the details of PCA–try to focus on the main
problem: producing Cov and then solving the eigenproblem. Look in
GetCov (in subs.f). This routine uses the BLAS-level 3 routine SSYRK
which computes

Cov := fac ∗ CT C + 0.0 ∗ Cov

Go to Netlib and find this routine in the BLAS package. Try to figure
out how we are calling it (you don’t need to download it, it is already
installed). Do we really need to initialize Cov to zero?

3. Now, go back in main.f and look at the call to SSYEV. The easiest
way to look up a LAPACK routine is with the LAPACK search engine

2



(go to the LAPACK package in Netlib and click on the search engine
link). We’re interested in driver routines, so click on that link (on
the left). Then click on the “Symmetric Eigenproblems” link. This
will bring up a Java applet with several menus. If you select “Real,
Single” as the precision, “Simple” as the driver, “With Dependencies,”
and ”Symmetric/Hermitian” then SSYEV will be listed in the box on
the upper right. Try changing the precision, does the name change?
Restore the settings. LAPACK’s search engine is handy for looking up
the subroutine to call for a specific problem, but to figure out how to
call it, we need to see the code. Click on the “see code” button to view
the code for SSYEV. The subroutine call and the explanation of the
needed variables is found at the top of all LAPACK routines. What is
the strange array WORK? How big should it be?

4. Now you know how the code works, lets get it to compile. Try typing
make in the command prompt. What happens? The problem is that
our source code contains no information on either SSYEV or SSYRK–
these are found in the LAPACK and BLAS libraries. As I explained,
I’ve built the ATLAS version of BLAS as well as LAPACK and placed
them in my directory (/home/ajp9/cs404/ATLASLinux PIIISSE1256).
UNIX libraries are stored in “archive” files which end with the .a suffix
and typically begin with “lib.” Each archive is actually a collection of
related object-code files (.o files–obtained by compiling with the -c flag),
much as a .tar file can contain several files. What archives are available
in the ATLAS directory? To get our code to run, we need to link to
some of these libraries. This is done using the -l compiler flag: -lFoo
would link to libFoo.a. Look at the Makefile. Everything is set, except
for the macro LIBS (-Lpath as defined for LIBPTH tells the compiler
where to look for libraries). We need to link to the LAPACK library
(for SSYEV) and the f77 BLAS library (for SSYRK). This suggest that
we should put “-llapack and -lf77blas” on the LIBS line. However, this
is not quite complete. The routines in libf77blas call routines in the
atlas library, so we need to link to that library as well. Note: the order
of the libraries is important. If library A calls routines in library B, the
you must link to B after linking to A. Finish setting up the Makefile
and build Fpca.

5. Run the program. Use the 5-by-3 sample problem in data.txt.

3


