Outline

- Announcements: – HW III due today!
- Trend I: Parallelism
- Trend II: Matlab
- Where to go from here

Trend I: Parallelism

- Computers get faster every year
- but, scientists' appetites will always exceed available resources
 - want to run higher resolution
 - want to run for longer
- One solution is parallelism:
 - divide problem into N pieces
 - give each piece to a separate computerTheoretically, could run N-times faster

Easy Parallelism

- Example: run small program on lots of different inputs
 - can get final answer in 1/N times if you have N computers
 - Any "parallel" computer (Cray, Velocity, cluster, internet) will work
 Example: <u>SETI@home</u>
 - - Problem is to analyze lots of radio data for ET

 - data is divided into small chucks which are sent to computers around the world these computers run SETI screen saver which analyzes small chunks

Hard Parallelism

- When divided into pieces, most scientific problems require data from other pieces
 - Need a way of sending data from one piece to another
 - shared memory
 - network

 - Requires programming (tell computer what information to share and when)
 Requires special systems with fast communication
 Dual processor PCs---->256 processor SGI or IBM systems
 - systems
 - Clusters of smaller units like Cornell's Velocity

Trend II: Matlab

- Matlab is an environment for scientific computing
 - programming language
 - graphics
 - lots of built-in functions (linear algebra, statistics, ODE solvers, etc.)
- It is very easy to do computational science in Matlab
 - easy to program
 - easy to debug
 - easy to analyze data

Matlab

- Matlab's only disadvantage: slower than compiled languages, but
 - Much faster development (prototyping)
 - Fewer bugs (no need to write PCGN, could just call CGM)
 - Easier to validate
- Alternatives to Matlab
 - IDL
 - S+

Where to go from here

If interested in	then take
numerical methods	CS 322, or CS 621-24
parallelism	CTC workshops www.tc.cornell.edu
algorithms	CS409 (for scientists) CS481 (more theory)
Matlab	CIS401-402
More development	CIS404 Librariesstarts after spring break!

