
CS 403: Lab 6: Profiling and Tuning

Getting Started

1. Boot into Linux.

2. Get a copy of RAD1D from your CVS repository (cvs co RAD1D) or
download a fresh copy of the tar file from the course website.

3. Go to the course website1, and download UPDATE.tar. This is file has
three sample problems of various sizes (C.txt, C2.txt, C3.txt, small.cmnd,
medium.cmnd, and large.cmnd) and a new linearalg.c file. In all cases,
the initial concentration at each gridpoint was determined by the func-
tion:

C(x, 0) = sin2(πx/L)

where L = 10. The only difference between the initial conditions is the
number of grid points (m = 20, 100, and 1000, respectively). Diffusion
is the only dynamics specified by the .cmnd files, and k = 0.1 for each.
Other than the initial condition file, the only difference between the
.cmnd files is the time step. These values of dt were chosen so that
σ = k ∗ dt/dx2 is the same for each problem. This ensures that the
numerical properties of the solution are the same. The new linearalg.c
file identical to the one from last week, except I’ve added two alterna-
tives to the conjugate gradient routine (pcgm). Place these files in the
same directory with your source code.

Profiling with gprof

1. Today, we’ll examine the performance of the model problem using the
profiling tool gprof. A complete description of gprof can be found at
the GNU website2. As with gdb, we need to compile our code in a
special way to allow gprof to see inside. Specifically, we need to use
the -pg flag. Add this flag to your Makefile and recompile (you should
delete all object files and the executable rad1d to make sure all files
are updated.

1www.cs.cornell.edu/Courses/cs403/2002sp
2www.gnu.org/manual/gprof-2.9.1/html chapter/gprof toc.html

1



2. Run the program using small.cmnd. In addition to the usual output file,
the program will produce a file called “gmon.out.” This file contains
the information that gprof needs, stored in an incomprehensible binary
format. gprof sole reason for existence is to convert this data into a
comprehensible format. To do this, type

gprof rad1d gmon.out > prof 20.txt

This command tells gprof to interpret the information in gmon.out as
if it came from rad1d (which it did) and to save the output in a file
called prof 20.txt. Open prof 20.txt in an editor and look at it. The
file is divided into two pieces: the “call graph profile” and the “flat
profile.” Each piece begins by defining the terminology used in the
corresponding profile (basically, a table). Following the first set of
definitions is the call graph table. This table is divided into sections
separated by a line of dashes. Each section corresponds to a subroutine
in the program. The first section should contain the information for
“main” and it should look something like this:

index %time self descendants called name

0.06 0.19 1/1 start [2]
[1] 96.2 0.06 0.19 1 main [1]

0.01 0.18 1001/1001 SolveA [3]
0.00 0.00 9/19 newarray double [23]
0.00 0.00 4/4 GetData [25]
0.00 0.00 2/2 newarray int [27]
0.00 0.00 1/1 ReadComm [31]
0.00 0.00 1/1 ReportParams [32]
0.00 0.00 1/1 GetInitialCond [29]
0.00 0.00 1/1 BuildA [28]
0.00 0.00 1/1 PrintArray [30]

The second line (the only one with information in the first two columns)
tells which subroutine this section describes. For clarity, I’ll call it the
SUB line. Each subroutine is given a unique number called its index
(a key is at the very bottom of the file, but the indices are also given

2



in brackets next to the names on the right). The second column tells
the percent of time spent in main and its descendants. The third and
fourth columns break down the time (now absolute time in seconds)
between the time spent in main (self) and the time spent in direct calls
from main (descendants). The fifth column indicates the number of
times the routine was called. The line (or lines) above the SUB line
describe the subroutine that called this routine (in this case, the system
subroutine “start” that actually starts the program). The self column
now refers to the amount of time main itself (not its descendants) spent
in the service of the caller, while the descendants column refers to the
amount of time main’s descendants spent in the service of the caller. If
the subroutine on the SUB line is only called from one other routine,
then the self and descendent times on line 1 will be identical to the SUB
line. The called column has two numbers: a/b where a is the number
of times start called main, and b is the total number of times that any
routine called main. This information is pretty boring for a routine
like main that is only called once, but it is more interesting for routines
like newarray double that are called many times by several functions.
Finally, the lines below the SUB line describe the subroutines which
main called. From this, we can see that most of the time is used in
the routine SolveA which is called 1001 times; however, relatively little
time is spent in SolveA itself, but is spent in its descendants. Keep
looking through the call graph and figure out where rad1d is spending
its time.

3. The second piece of prof 20.txt is much easier to interpret, and for a
simple program like ours, it contains almost all of the information. The
first few lines of the table looks something like

3



% cumulative self self total
time seconds seconds calls ms/call ms/call name
53.8 0.14 0.14 1001 0.14 0.18 pcgm [4]
23.1 0.20 0.06 1 60.00 250.00 main [1]
15.4 0.24 0.04 2474 0.02 0.02 sprsmlt [5]
3.8 0.25 0.01 1001 0.01 0.19 SolveA [3]
3.8 0.26 0.01 memchr [6]
0.0 0.26 0.00 19 0.00 0.00 newarray double [23]
0.0 0.26 0.00 4 0.00 0.00 CheckCase [24]
0.0 0.26 0.00 4 0.00 0.00 GetData [25]

Basically, this table breaks down the time among the subroutines and
gives some information on the number of times called (but nothing
about who did the calling). Does this agree with your conclusion from
the call graph?

4. gprof gets its timing data by periodically checking to see which sub-
routine is being executed. Any sampling procedure, whether its for a
computer program or a scientific experiment will only produce an ap-
proximation to the truth. One way to find out what our program is
really doing is to make several runs and average them. We can also
get a better view of our code’s performance by using a larger problem.
A larger problem means we should spend more time in each subrou-
tine, and this should result in more samples in each routine and a more
accurate measure of performance. Run rad1d using large.cmnd. Run
gprof and save the output as prof 1000.txt. Examine the file, does it
change your conclusions? For our program, the flat profile contains all
of the interesting information. If you want to look at it without having
to page through the other info, type

tail -30 prof 1000.txt

(tail is a UNIX command that displays the last few lines of a file, in
this case, the last 30).

5. By looking at the code, it shouldn’t be surprising that pcgm is limiting
the performance of our program. This routine solves our matrix prob-
lem A ∗ C = RHS in a somewhat unusual way. Rather than factoring
A, pcgm makes a guess at what C should be, multiplies the guess by A

4



(in a routine called sprsmlt), and based on the difference between the
answer and RHS computes a new guess. If A has some key properties
(if it is symmetric and positive definite), then pcgm will find C after
only a few iterations. In the new linearalg.c, there are two additional
implementations of pcgm that I hypothesize will have better perfor-
mance. The routine pcgmI has the code for sprsmlt pasted inside. My
hypothesis is that inlining sprsmlt will avoid the overhead associated
with calling it, thereby improving performance. To use pcgmI, just
add change the name of the subroutine call inside SolveA and recom-
pile. Run the large problem and then gprof and save your answer in
profI 1000.txt. Does inlining improve the performance?

6. Another alternative to pcgm is pcgmL. In pcgmL, I merged some
of the loops to try and maximize cache re-use. For example, rather
than computing r[n]=r[n]-alpha*w[n] in one loop and then computing
z[n]=c[n]*r[n] in a second loop, I merged the two loops so that r[n]
can remain in the cache. Is pcgmL better than the original or inlined
versions?

7. Last, but not least, let’s see what the compiler can do. If you type
man gcc, you’ll see that there are man options for our compiler, many
of them tell the compiler to try various tricks to make the code run
faster. Fortunately, most compilers allow you to apply several tricks
by setting only one option. For every UNIX compiler I’ve ever seen,
including gcc, there are three optimization levels: -O, -O2, and -O3,
with the higher number indicating more aggressive optimizations and
hopefully faster code. CAUTION: on some systems, -O3 may result in
incorrect results. Check your compiler’s manual and your answers! To
try the -O2 option: add this option to CFLAGS in Makefile. Delete all
of the .o files and rad1d and recompile. As time permits, compare the
performance of the three versions of pcgm using this option. Which
version is faster with -O2?

5


