
1

OutlineOutline

• Announcements:
– HW II Idue Friday!

• Validating Model Problem
• Software performance
• Measuring performance
• Improving performance

Validating Model ProblemValidating Model Problem

• Our solution C is only an approximation of the
true solution

• The accuracy of the approximation will depend
on
– dt
– dx
– “smoothness” of the initial conditions

• Two things to watch for:
– lambda <1--solution will “blow up” if lambda>1
– decreasing dx will make solutions more accurate

• Try at coarse (m=10) and fine resolution (m=100)

Software PerformanceSoftware Performance

• Factors influencing speed
– Hardware

• Clock speed, memory size/speed, bus speed
– Algorithmic scaling

• What happens as n gets big?
– Interaction between algorithm and hardware

• Compiler optimizations vs. hand tuning

2

Computer ArchitectureComputer Architecture

CPU
Control Unit

Arith./Logic Unit

Registers L1 cache

L2 cache

Memory
(RAM)

Disk

Bus

• Von Neumann described a memory hierarchy
– Fast-------------------------------------> slow
– $$$-------------------------------------> cheap
– Register L1 L2 RAM Disk

Architecture and PerformanceArchitecture and Performance

• Avoid using the disk!
– Minimize reading and writing
– Buy more RAM so you don’t use virtual memory

• Buy a system with lots of fast cache
• Buy a system with lots of RAM
• Then, if you have money left, buy a fast chip

Algorithm PerformanceAlgorithm Performance

• There are often several algorithms for solving the same
problem, each with its own performance characteristics

• Much of computer science is concerned with finding the
fastest algorithm for a given problem

• Typically, we’re interested in how an algorithm scales
– How it performs as the problem size increases
– To determine this, we need an accounting system (or

model) of how a program runs
– The simplest model assumes all commands take the same

amount of time, so we just need to count commands
– We could use more complicated models that weight

commands

3

Algorithmic Performance of LinearAlgorithmic Performance of Linear
SearchSearch

• Linear Search
– Inputs=integer array x of length n, value k
– Output: j s.t. x[j]==k, or j=-9 if k not in x
int LinSearch(int x[], int n, int k){

j=0;
while(x[j] != k & j<n){

j=j+1;
}
if(j==n){

return(-9);
}else{

return(j);
}

}

Algorithmic Performance of BinaryAlgorithmic Performance of Binary
SearchSearch

• Binary Search
– Inputs=SORTED integer array x of length n, value k, integers st

>=0 and en<=n
– Output: j s.t. x[j]==k, or j=-9 if k not in x[st:en]
int BinSearch(int x[], int st, int en, int k){

int mid, ans;
 mid=(en-st)/2+mod(en-st,2); //middle of array
if(vec[st+mid] == k){

ans=st+mid;
} else {

if(mid<1){
ans=(-1);

} else {
if(vec[st+mid] < k) {
 ans=BinSearch(vec, (st+mid+1), en, k);//Search on right
} else {
 ans=BinSearch(vec, st, (st+mid-1), k);//Search on left

}}}
 return(ans);
}

Comparing Linear and BinaryComparing Linear and Binary
SearchSearch

• Linear Search
– max n iterations through loop
– will work on any array

• Binary Search
– max log2(n) recursions (log2(n)<n)
– faster if x is already sorted
– but sorting takes approx. n2 steps

• So, if you have to perform < n searches, use
linear search

• If you have to perform >n searches, sort first,
then use BinSearch

4

Interaction between algorithm andInteraction between algorithm and
hardwarehardware

• There are several ways to implement the same
algorithm

• Their performance could be very different, if they get
compiled in different ways.

• The differences are due to interactions with the memory
hierarchy

Rules of thumbRules of thumb

• Minimize computation (precomputing)
s=sqrt(b*b-2*a*c)
x1=(-b+s)/(2*a);x2=(-b-s)/(2*a);

– better than
x1=(-b+ sqrt(b*b-2*a*c))/(2*a); etc.

• Minimize division
overdx2=1/dx;
overdx2=overdx2*overdx2;//1/dx^2
for(j=0;j<m;j++){sigma[j]=k[kJ][j]*dt*overdx2;}

• Minimize function/subroutine calls (inlining)
– There is overhead associated with calling functions
– This goes against good programming which encourages

modularity

• Avoid big jumps in memory
– Data is moved from RAM to cache in chunks
– Accessing arrays sequentially maximizes cache-reuse
– Special implication for 2 (or higher) D arrays

• Memory is sequential:

Rules of ThumbRules of Thumb

A12A11A10

A02A01A00

A12

A11

A10

A02

A01

A00

A12

A02

A11

A01

A10

A00Row Major:
C, C++, Java,
Matlab

for(j=0;j<2;j++){
 for(k=0;k<3;k++){
 A[j][k]=…
 }
}

Column Major:
FORTRAN

do k=1,3
 do j=1,2
 A(j,k)=…
 enddo
enddo

5

Improving performanceImproving performance

• To improve algorithmic performance
– Take more CS!

• To improve interaction with hardware
– Check out compiler optimizations
– Then, start hand-tuning the code

Compiler OptimizationCompiler Optimization

• A good compiler can take care of lots of things
automatically
– some precomputing
– some inlining (for small functions)
– other things like loop unrolling:

for(j=0;j<100;j++){
 for(k=0;k<20;k++){
 A[j][k]=…
 }
}

for(j=0;j<100;j++){
 for(k=0;k<20;k+=4){
 A[j][k]=…
 A[j][k+1]=…
 A[j][k+2]=…
 A[j][k+3]=…
 }
}

Measuring PerformanceMeasuring Performance

• Before we start messing with working code, we should
identify where code is slow

• This is called profiling
– Goal is to identify bottlenecks--places in the code that limit

performance
• We can use profiling tools like prof (gprof) or insert

timing calls
• Important to check performance on problems of

different sizes

6

My AdviceMy Advice

• Before you do anything, make sure your code works
• well-tuned incorrect code is still incorrect
• It is better to solve your problem slowly than not at all!

• Look for algorithmic improvements
• Try compiler options

• Read your compiler’s manual to learn about what they do
• Last but not least, try hand tuning

