
1

DebuggingDebugging

OutlineOutline

• Announcements:
– HW II dueFridayl
– Q1 on model problem is answered in key to PS1

• You may use the file-type I specify
• Or design your own
• Just make sure Q1 and Q2 are consistent

• Old fashioned debugging
• Debugging tools

Old-Fashioned DebuggingOld-Fashioned Debugging

• The point of debugging is to find your errors
• Simplest technique is checkpointing

– Place an output statements around calls to
subroutines

• Printf(“Entering subroutine A”)
• A();
• Printf(“Completed subroutine B”)

– If your program crashes in A, you won’t see the
second line

• Work into subroutines, bracketing sections of
code with outputs until you find where the
error occurs.

2

• Checkpointing is nice because it works on any
system that can run your code

• But, requires lots of compiles as you zero in
on bug.

• Can also output data values
• WARNING: Finding the line where the program

crashes is not enough, you need to know why!
– The problem could result from a previous statement
– In this case, figure out where the variables on the

offending line are set, and work backwards

Old-Fashioned DebuggingOld-Fashioned Debugging

• UNIX standard debugging program is db
(gdb on Linux)

• gdb allows you to watch your program
run
– Set breakpoint--position in code, execution

will stop when reached
– Step through program line-by-line
– Examine value of variables

Middle-age debuggingMiddle-age debugging

• To use db, compile with -g flag
– On most systems, can’t use -g with -O

(optimizations)

• Then type
– (g)db program inputs

• Db will start and it will “grab” your
program

dbdb

3

• Typical session,
– Set breakpoint(s) (br)
– Run until you hit a breakpoint (run)
– Step through some lines (n, s)
– Look at some variables (p)
– Continue to next breakpoint (c)
– Quit (q)

dbdb

• Setting breakpoints
– break ReadComm-- sets a breakpoint at

ReadComm
– break io.c:21 --sets a breakpoint at line

21 in io.c

dbdb

• Stepping through
– Typing run will take you to the next

breakpoint
– You can step through line by line by typing

n(ext)
• gdb will display the next line of code to be

executed

– If the next line is a call to another
subroutine
• Typing s(tep) will “step into” that rountine
• Typing n(ext) will skip to the next routine

dbdb

4

• Viewing variables
– You can check the value of a variable by

typing “p name”
• This may not be what you expect

– p array will give the memory address of the array
– p array[0] will give the value at the first location

• db is complicated
– Type man db or man gdb to see more info

dbdb

• IDE’s like VizStudio have graphical
debuggers
– On some systems, this is just a GUI for db

Modern DebuggingModern Debugging

