
CS 403: Lab 4: Debugging

Getting Started

1. Boot into Linux or Windows, it’s your call.

2. Download RAD1D buggy.tar from the course website1. This is the
model problem minus the subroutine you’re writing for PS2 and with
a couple of bugs thrown in. Remember, to untar the file, type tar svf
RAD1D buggy.tar.

3. Go to the appropriate section below and fix the errors!

Linux Debugging with gdb

1. Cd into RAD1D buggy and fix Makefile so that it will build an exe-
cutable that can be debugged.

2. Look at basic.cmnd and figure out what it is telling the program to
do. In particular, look at C.txt, the initial conditions (open with nedit
or type more C.txt). Build the program and try running it. What
happens?

3. Let’s find the error. First, open the .c files so that you can see what’s
going on (it is possible for gdb to show you code, but it’s much easier
to look at it in an editor. Then type gdb rad1d basic.cmnd. This
starts gdb and tells it that you’ll be working with rad1d using the input
basic.cmnd. Since the error happens when the program is trying to read
C.txt, find the subroutine that handles this (hint: it’s in io.c). When
you have the subroutine name, type br name where name is the name
of the subroutine. To run the program to that point, type run.

4. I won’t tell you how to find the error, that would be too easy. However,
I will give you some important gdb commands:

1www.cs.cornell.edu/Courses/cs403/2002sp

1



Command Arguments Description

n go to next statement in current subroutine
s step into the subroutine

finish step out of subroutine
u go until next line is reached (try this at the end of a

for/while loop to avoid going through each iteration.
p name value of variable name
p name=expr changes value of name to expr

5. You should now be able to read C.txt, but you’re not done! There is
another bug. To see this, compare the output file (Cfinal.txt) to the
C.txt. Find the last error.

Windows Debugging with VizStudio

1. Start-up VizStudio and create a new project (I’d call it rad1d). Add
the .c and .h files, then build. To run, click on the red exclamation
point. What happens? Most likely, it won’t run. This is because
your executable is placed in the Debug directory and it is run from
there. Thus, when you type “basic.cmnd,” the program can’t find it.
There are two ways to fix this. One, you can move all of your input
files (C.txt, basic.cmnd) into the Debug folder. Or, you can set the
working directory to wherever you data is. To do the latter, open
the settings panel (under the Project menu). Type the path of your
working directory in the working directory field. You can also set the
program arguments to basic.cmnd, so you don’t have to type it in every
time. Now run it. What happens?

2. Let’s find the error. VizStudio’s debugger works a lot like db: we’ll still
set breakpoints and step through the code, but we’ll do it graphically.
Since the error happens when the program is trying to read C.txt, find
the subroutine that handles this (hint: it’s in io.c). When you find the
subroutine, right-click on the first statement in this routine and select
“set breakpoint” from the menu that appears. To start the debugger,
select “start debug” from the “Build” menu. You step through the
code by clicking on the buttons on the palette (hold the mouse over a
button for a second, and the name of the button should appear). In
VizStudio-speak, “step-over” takes you to the next command, “step

2



into” takes you inside a subroutine, “step out” finishes the routine and
takes you to the next line after it. You can also click on a line of code
to place the cursor there, and then click “run to cursor” to have the
debugger run ahead to where you’ve set the cursor. Finally, the value
of the variables in the current subroutine are in a table in a separate
window. Good luck.

3. You should now be able to read C.txt, but you’re not done! There is
another bug. To see this, compare the output file (Cfinal.txt) to the
C.txt. Find the last error.

3


