
1

Building & DebuggingBuilding & Debugging

OutlineOutline

• Announcements:
– HW I due by 5PM via e-mail
– HW II on line, due in one week

• Building with make
• Old fashioned debugging
• Debugging tools

Good Design & the Genesis ofGood Design & the Genesis of
DependenciesDependencies

• Modularity is a key feature of good
programming

• Modularity begets lots of subroutines
(functions/classes)

• Lots of subroutines begets lots of files
– Keep related subroutines in their own file (library)

• Lots of files begets dependencies
– changes in a subroutine often require changes in

other subroutines in other files

2

Compiling multiple filesCompiling multiple files

• Compiling multiple files is not a problem
– cc -oappname -02 f1.c f2.c f3.c … fN.c

• but it can be frustratingly slow!

Compiling multiple filesCompiling multiple files

• If you’re only modifying one file,
– 1) compile the files you’re not working with to object

code
• cc -c -O2 f1.c f2.c…fM.c

– 2) compile the files you’re working with & link with
objects

• cc -oappname -02 f1.o f2.o…fM.o fM+1.c …fN.c
• saves you the time of compiling the first files
• if functions in f2 depend on fN, then the scheme before

wouldn’t work

MakeMake

• make--standard UNIX tool for building
software
– typing “make” will force the make program to build

your code according to the file “Makefile” in the
current directory

– At its simplest level, Makefiles are just scripts that
control the build process

– But, make allows you to define dependencies so that
only the files that need to be compiled will be

• very nice for development

3

Makefile Makefile syntaxsyntax

• Make files contain 3 types of statements
– Comments (start with “#”)
– Macros or variables (name = value)
– Dependencies (two lines)

• filename : files it depends upon
• <tab> command to execute if files are newer than

filename

• Usually, Makefiles define macros first and then
dependencies

#Makefile for firsttry
#These are Macros--variables for use in the file
CC = gcc #the c compiler we’ll use
CFLAGS = #place compiler flags here
PROGRAM = firsttry #the application name

$(PROGRAM): firsttry.c
 $(CC) $(CFLAGS) firsttry.c -o $(PROGRAM)

#line must start with tab

MakefileMakefile Example Example

When to useWhen to use Makefiles Makefiles

• Make really shines with large projects, with
several files

• It is very useful when debugging
– Use -c option and only compile files that change

• A good way to have others use your code
– Hopefully, they’ll just have to type make to build
– May have to edit some lines: CC and CFLAGS

4

Generating DependenciesGenerating Dependencies

• Some systems have the command
“mkdepend” (mkdep on some systems)
– mkdepend newmakefile *.c will look at the #include

statements in the .c files and write dependency
information to newmakefile.

– You will still need to do some work

• Or you can do this yourself
– Design descriptions and diagrams should be helpful

Old-Fashioned DebuggingOld-Fashioned Debugging

• The point of debugging is to find your errors
• Simplest technique is checkpointing

– Place an output statements around calls to
subroutines

• Printf(“Entering subroutine A”)
• A();
• Printf(“Completed subroutine B”)

– If your program crashes in A, you won’t see the
second line

• Work into subroutines, bracketing sections of
code with outputs until you find where the
error occurs.

• Checkpointing is nice because it works on any
system that can run your code

• But, requires lots of compiles as you zero in
on bug.

• WARNING: Finding the line where the program
crashes is not enough, you need to know why!
– The problem could result from a previous statement
– In this case, figure out where the variables on the

offending line are set, and work backwards

Old-Fashioned DebuggingOld-Fashioned Debugging

