
CS 403: Lab 3: Building with Make

Getting Started

1. Boot into Linux and log in.

2. Download a fresh copy of Cbasics.tar from the course website1. This is
essentially the same code as before, but I’ve added newlines to eliminate
the warning messages and deleted one #include statement that was
redundant. Remember, to untar the file, type tar svf Cbasics.tar.

Building with make

1. Open the .c and .h files in Cbasics in an editor (nedit *.c *.h &). For
each row in the table below, place an “X” in column two if the file in
first column includes system.h. Place an “X” in the second column if
the file includes io.h.

system.h io.h

system.c
io.c

main.c

2. We’re now ready to start building a Makefile. First, open a blank file
in your editor (in nedit, select “New” from the file menu). On the first
few lines, place a # in the first column and describe what we’re doing
(in case you’re wondering, we’re creating a Makefile for Cbasics, which
will end up being similar to the Makefile for the model problem).

3. Now we’ll define some variables (macros). I’ll give you the first one:
put “CC = gcc” on a new line. This lets us define the compiler for our
system. You should probably place a comment after “gcc” to remind
yourself that this is where you set the compiler. Create a variable
CFLAGS and set it equal to the compiler flags we need (hint: we don’t
need any). Finally, create a variable called PROGRAM and set it equal
to the application name (we used cbasic last time, feel free to change
it).

1www.cs.cornell.edu/Courses/cs403/2002sp

1



4. We’re ready for our first dependency. The first dependency in any
Makefile must define how the program is built–this is the last command
we would enter to build the executable. Because we have a multi-
file program, we’re going to take advantage of the -c option. Thus,
cbasic will depend on the object files for each .c file. We write this
$(PROGRAM): main.o io.o system.o. This tells make that if any of the
.o files have changed (if their modification dates are newer than the
program’s) to execute the commands on the next line(s). Move to the
line immediately below the dependency statement. HIT THE TAB
KEY ONCE! The tab is critical. make is very fussy and absolutely
requires a tab on the lines following the dependency statement. Then
type $(CC) $(CFLAGS) main.o io.o system.o -o $(PROGRAM). Note:
make replaces $(Variable) by the value of Variable.

5. To finish the Makefile, work backwards from our last command and
determine the dependency statements and commands to build main.o,
io.o, and system.o. Hint1: an object file depends on its .c file any any
.h files that are included (check the table above) . Hint2: remember to
use the .c so that you build object files. When you’re done, save your
changes.

6. Delete any object files (rm *.o) and type make at the command line. If
everything is correct, you should see your build statesments scroll by
and you should see your program (cbasic) when you type ls. If you get
an error message, try to figure out your error.

7. We’ll now see exactly why Makefiles and the -c option are useful. Place
some checkpoint statements (something like printf(”I’m now entering
routine X\n”)) in main.c, save your changes, and type make again.
What happens? If your Makefile is correct, then only main.c should
be compiled. Try adding some checkpoints to io.c and system.c. What
happens when you make them?

8. Last but not least, suppose you want to have PrintArray place a line of
text (a comment line) at the start of the output file (C.txt). To do this,
you will need to edit the description of PrintArray in io.c to something
like

void PrintArray(char name[], char comment[], double C[], int m)

2



You will also need to change the prototype in io.h to match, and you
will have to change the call in main.c to something like

PrintArray(”C.txt”, ”this is a comment”, C, m);

Now run make. Which statements were executed? What do you think
would happen if you edited system.c (add a blank line or a comment
and try it)? What about if you edit system.h?

3


