
CS 403: Lab 2: Comparing C and FORTRAN

Getting Started

1. Boot into Linux and log in.

2. Open Netscape (from the “K” menu at the lower left). Navigate to the
course website1 and download the file “CFtest.tar” to your home di-
rectory. Tar stands for “Tape ARchive” and is a standard Unix format
for bundling several files as single file (similar to Zip file on Windows).
To unpack the file, open a terminal and type tar xvf CFtest.tar. You
should now have two directories: “Cbasic” and “Fbasic” which contain
the sample problem implemented in C and FORTRAN.

C

1. Cd into Cbasic. You should have three files with C code (main.c,
io.c, and system.c), two header files (io.h and system .h), and a single
command file basic.cmnd. The program described by these files will
read four parameters for the model problem (m, L, dt, T ) from the
.cmnd file and will create a length m array called C where it will place
the location of the grid points. The program will then save C in a
file called “C.txt.” Use gcc to build the program from the .c files. I’ll
assume you’ve named it “cbasic.”

2. Typing cbasic basic.cmnd will start the program and tell it to read from
basic.cmnd. You can look at basic.cmnd by opening it in an editor
or by typing more basic.cmnd on the command line (more is a UNIX
command that displays text files–if the file has many lines, you may
need to press the spacebar to page through the file). What happens if
you just type cbasic?

3. Open basic.cmnd in an editor. Try changing some of the values and
then running cbasic (Hint: use more to look at C.txt).

4. Let’s look at how the program is structured. Type nedit *.c *.h & to
view all of the files in an editor. main.c contains the main subroutine
(where the program starts). All of the other subroutines are found in

1www.cs.cornell.edu/Courses/cs403/2002sp

1



the other .c files: io.c contains the routines for reading the .cmnd file
and for displaying the parameters and saving C.txt; system.c contains
a routine for generating an error message and another for dynamically
allocating arrays. The .h files are header files, and they contain the
prototypes for the subroutines in the corresponding .c files. C requires
you to define a prototype for all subroutines. The prototype describes
how the routine will be called (its input and output). In order to use the
routines in io.c and system.c, the main file must import the prototypes.
This is the function of the header files, and they are imported using
the “#include” directive. Look at the files. What is the relationship
betweeen system.c and system.h? Which files include system.h? io.h?

5. We’re now going to check out two features in C. C was really designed to
build command line tools, and consequently, there is a well-established
mechanism for getting command line arguments into a C program.
Look in main.c. How does the program decide whether or not to ask
the user for a command file?

6. The size of a C array can be set at compile time (static allocation)
or at run time (dynamic allocation). Compare how the character ar-
ray commfilename is created vs. the double array C. Which allocation
method is easier to program?

FORTRAN

1. Cd into Fbasic (cd ../Fbasic–“..” indicates the directory one level above
the working directory). Copy basic.cmnd into this directory (cp ../Cba-
sic/*.cmnd .), then list the files. The .f files contain the source code for
a FORTRAN implementation of cbasic. Compared with the C version,
what’s missing?

2. Build fbasic. by typing g77 *.f -ofbasic (g77 is the GNU FORTRAN
77 compiler). Run the program by typing fbasic. What happens if you
type fbasic basic.cmnd?

3. Open the .f files in an editor. Is there a main subroutine?

4. Look for the array C. What determines the size of C? Edit basic.cmnd
so that m (the first line) is greater than MMAX in main.f, then run the

2



program. What happens? Fix the program so that it will work with
your new m.

5. In question 1 above, you should’ve realized that FORTRAN has no
concept of prototypes or header files. We’ll now see an example of why
prototypes are good. Remove m from the call to PrintArray. Rebuild
fbasic and run it. What happens? If you’d done the same thing in
main.c, would gcc have caught the error? Try it.

3


